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INTRODUCTION

Here we conslder some aspects of laser gas-mlxture heating. The system exchanges
energy wlth the environment and is thus disslpative. Various types of self-organization
phenomenon occur in a nonlinear dissipative system, where stationary and nonstationary
structures arise [1,2]. The structures have falrly extensive attraction regions (in
i terms of the initial conditions) and may ‘be considered as asymptotically stable proper
states (autostructures). . . :

IR laser kinetics [3] can provide scope for simulating these phenomena, since one
can vary the beam parameters to control the type of nonlinearity, which 1s a feature
usually representing some difficulty for other types,of system, and which substantially
restricts the types of structure that can be observed.

Here we consider two types of structure occurring on IR irradlation: self-oscillatory
and soliton-type ones. These correspond to nontrivial self-organization types and clearly
demonstrate the wlde scope for controlling system dynamics.

1. GAS-MIXTURE OSCILLATIONS

Experiments have been reported [4,5] on the transmission of a continuous-wave Cdé—

laser beam through a mixture of active and inert gases (SF6 + NH3, SF6 + alr, and so on).

There 1s an incident-beam parameter range where one gets oscillatory power levels, where
the characteristic osclllatlon times (10-100 sec) [4,5] indicate transport by diffusion,
not by gas-dynamic processes. These osclllatlons have been ascribed [4-~7] to thermal
diffusion in the inhomogeneously heated gas, but there are alternative explanations, in
particular due to local density change produced by temperature gradlents.

Consider the heating 1n an inert-gas mixture in a cell falrly thin along the beam
axls. Let the beam be absorbed by one component. The heating in the beam region reduces
the density by thermal expansion and thus reduces the amount of absorbing component, so
the gas cools and the density rises again; the process then repeats. By analogy with
[6,7], one can show that oscillatlions require a fairly high absorptivity temperature de-
pendence, whlch 1s characteristic of many molecular gases in the IR range [8,9], and some-
times one has

A(n, T)=pnN exp (—T/T), B, Te=const, (1)

where N 1s density and n absorblng-component concentration. Let the radlation pass along
the Y axis to a long cell (along the XLY axis) that 1s thin along the Y axis and con-
tains an inert two-component mixture. The temperature T and concentratlon n are described
by
1 oT 4T 1
TT:'F+,¢7[A("'T)l(’)_"(r—m]' T|ime=T,
1 d(nN) af(, on
D & az\ 9z

(2)

). n|ime=n,; —R<z<R.

Here a, k, and D are the thermal diffusivity, thermal conductivity, and diffusion co-
efficlent, while h 1s the cell thickness. The [—n(P-T,)] term describes the heat exchange
© 1988 by Allerton Press, tnc.
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Fig. 1. a) Time dependence of gas temperature at
the beam axls derived from the exact system (curve
1) dnd the .approximate one (curve 2); b) phase
pattern for approximate system (8) for the case

of Fig. la. Parameter values v=3; bm=i; j=2805; ne=0,1}
1=495; Ri/zem5 ,

with the environment, which has temperature Te. The intensity distribution I(x) 1is

I(z)=I, axp(—3*/z.}). (3)

The local N after fast gas~dynamlc relaxation 1s related to thé local temperature by

T, 1 1 (dz
Y= T mLT o

(Nh is the gas density in the homogeneous state). This follows from P = NkT, in which
one takes P as constant throughout the cell.

(2) neglects thermal diffusion and the diffusion-based thermal effect, which 1s ap-
plicable for many gas mixtures [10], although the converse situation can occur [11].

We introduce the symbols

O=(T=T.)/T, QmnNIN, t=ifts, t=zlzs 1=TdT,

(5)
bunzst/xh, v=a/D, j=(N,plinT,)e”", te=z'la.
Then (1)-(4) becomes
0 &0 n (19
a—x'a—;-“[fexv(—e)exv(m)o-°]. O me=0, -
aQ aQ a{ Q a0
Yo e ""a—g(o“ YA A

We supplement (6) with the boundary conditions corresponding to heat and mass insulation
at the cell boundaries: ®=0=0 at E=xR/r,, These conditlons provide for conservation of

the total amount of gas in the cell. In what follows, we are interested in the 1limit

R + o,

There 1s a notable feature. The above implies that the spatial inhomogeneilty in the
radiation field 1is important for oscillations to arise. It can be shown by analogy with
[6] that homogeneous stationary states are stable and that oscillations will not be ex-

cited for Xg * @ 1.e., for a homogeneous intensity distribution throughout the cell
length.

It 1s convenlent to reduce (6) to a system of ordinary differential equations for
analytic examination. We use a form of the Bubnov-Galerkin method [12] as employed in
[6]: we introduce the Galerkin coordinates ¢(t) and q(t) from

O (%, <) ~g(t)exp(—2'),

Q(&, t) =net[g(c)—ns]exp(t?), (7)
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Fig. 2. Division of the {u, Y} parameter plane by curves representing the
boundarlies for the saddle points (1) and the stability boundaries for points
not of saddle type (2). The dashed lines represent continuation of curve 2 on
the saddle point surface, v(b + 1) = 10. '

Flg. 3. Soliton veloelty v as a function of radiation power g derived from
(25) for a of 1 (1) and 0.1 (2). The solid lines correspond to the stable so-
lutlon and the dashed ones to the unstable one.

The coordinates {¢, q} describe the gas temperature and the absorbing-component density
at the axls (£ = 0). One can simplify (7) further by introduclng more complete sets
{¢i, qi}, e.g., as coefflclents 1n the expansion of ¢ and Q in terms of Hermitian poly-

nomials:

O (5, 7) = exp(~8) 1. 0 (D EL (),
‘ (7")
0k, =n+oxp(~t) X la,(x)-ml . 3).
. |
To obtaln the required system, we reétrict ourselves to the (7) approximation. We
substitute (7) into (6) and multiply both equations in (6) term by term by exp(-£2) and
integrate wlth respect to & with limits -» to += to get .

do ; 19 b dg _ _2te 2+3¢
— - (b+ 1)+ L) v Ry — )
dv (b+1)g+big exp ( o+ e 2(1+¢) 2(1+9) q

(8)

When the solutions to the exact system (6) and the approximate one (8) are compared, 1t
1s found that the simplified model gives a good qualiltative description.

Figure la shows ¢(t) and ¢(0, t) for 1dentical parameter values derived by numerical
solution from (8) and (6) correspondingly, and Fig. 1b shows the (8) phase pattern for
the same parameter values.

We examined (8) by standard methods from nonlinear-oscillation theory [13,14]; Fig.
2 shows a typical subdivision of the {u, y} parameter plane into subregions differing in
the number and stabllity of the singular points. The exlstence boundary for the saddle
polnts (curve 1) 1s given in parametric form by

21—z 2z (g4 50-8)) 1
" bjn, z 2+z exp(yz), 1 (1+ 4—2* /3(1-3) ' (9)

while the stabllity limits for points not of saddle type (curve 2) are given by

2+s 1
2v(b+1) /z(1—2)

F-;—‘OIP(TZ)- 'r-(H' (10)

(z = ¢/(u + 1) 1s a parameter). Table 1 classifies the slngular points corresponding to
the various subregions in Fig. 2.

151




Table 1
Region Singular points
inFig. 2 lower saddle upper
1 Caolncides with upper :Abum Stabie
n » . » Unstable
1 Stable ntp:>0 Stable
v » ntpa<t »
14 » pHpa<t ]
vi Unstable ntp>0 »
vit Stable prtp>0 Unstable
vir u:unlnn pitpa>U : »

Noate, 1. The upper and iower singular points denote the high-temperature and iow-temperature
stationary solutiofns to (8). 2. For a saddie polnt (which is aiways unstabis), we give the sum of

the charecteristic parameters p, and p,, which are defined as follows: it #{0) and q(0) represent &
a cartain stationary solution, one can iinearize (8) with respect to the small deviations Ay = y—pl0),
Aq = g—a{9) and put (Ay, Aq) ~ exp(pT), to get a characteristic esquation from which p, and p,
are derived, ' :

Oscillation requires y > 4 and v(b+1)>ve~48. Then as v and b increase (1.e., the beam
radius increases, since b ~ xg), the osclllatlion region expands.,
Finally, without entering into details, we estimate the oscillation period in various
limiting cases: -
t%5,5v or tm5,55,/D. (11)

Typical values are D = 0.1 <:.x'n2-se<:'1 and Xg = 0.5 cm, which give t = 15 sec.

2. CHEMICAL SOLITON

Another type of dissipative structure is a travéling pulse, which we consider for IR
heating in a mixture showing a reversible reaction. Such a gas on laser heating at a
suitable wavelength can show bistability [15,16], 1.e., in a-certain power range (W.<W<W,),

there are two stable equilibrium states that differ in temperature and component concen-
tration. The phenomenon has been examined in detail for an ideal-mixing reactor, for the
case where the temperature and concentration gradients are negligible and the radiation
attenuatlon on passage through the gas can be neglected. '

Numerical simulation has been used [17] to examlne the behavior of such a mixture on
the basls of Bouguer attenuatlion but withput allowance for heat and mass transfer. If
the bistablllity condltions are met, the reaction is effectlvely localized in a bounded
region 0 < x £ X, (x = 0 1s the radiation entry point). Here we consider a similar system

with allowance for thermal conduction and Bouguer absorption.

The reaction B/=B: occurs in a long thin cell 1lluminated from the end with power
We(W,,W,). The concentration n of substance B2 1s defined by a kinetic equation that in-
corporates diffusilon:

%;-D:—:Hk.(i—n)exp(-%)—hnoxp(-%)- (12)

We assume that Tl > T2. In the homogeneous statlonary state (nt = nxx = 0), n 1is

n-[1 +%exp(rl;rl)]_‘-n(2'),. (13)

where n(T) increases from 0 to (1 + 14:2/kl)'l as T 1increases. The radiation 1s absorbed
only by 52' Then the temperature 1s given by the conduction equation

19T #T 14l 4,
TH T e T (14)
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where ny is the heat-loss constant per unit cell length. The intensity diminishes 1in ac-
cordance wilth Bouguer's law:

_:-—pnl, B = const. (15)

The phenomenon 1s as follows. At the start, the system 1s in the lower concentration
and temperature state. If the medium 1s transferred to the upper state in some finite
region, the absorption there lncreases and the gas begins to heat up. Adjacent regions
also begin to be heated by thermal conductlon and absorption. The darkening zone will
enlarge untll the radiation power after it becomes less than Wl’ the minlimum necessary

for bistabllity. The zone begins to move in the opposlte direction to the beam, since
conduction heats the region before 1it, which 1ncreases the absorptlon, while the region
after 1t cools by heat transfer to the environment and thermal conduction. One thus gets
a chemical sollton, namely a localized region 1in which the medium 1s in the upper (ex-
cited) state.

Thls effect occurs because of energy exchange with the enviromment (i.e., in a dissi-
patlve system) and thus differs from a soliton in a nonlinear conservative system; the
parameters such as speed, wldth, and amplitude are independent of the initial conditions
to a considerable extent. On the existing terminology [18], such a phenomenon is called
a travellng pulse.

To simplify the analyslis, we now take subsequently that T = O, with-the cell taken
- as long enough, where we 1lntroduce the symbols

ST VR 5 TIPS S PO S
« b4 r-T, (TI—TJ)/"‘“I (16)
' ky
\ D' -] V'I'ﬂ, 7‘...
Thén the 1initial equations become
00 0 0]_ af
o w Y ok
on 1 *n 1\1
Tt-T—a.—,"‘K(O)[n(O)—n] n(O)—[l+kexp(E)] , (17)

K(‘D)——[e':p( r.T'r ‘;)+k p(—L',‘l;)]

Thermal conduction and heat loss are the principal factors resulting in the soliton.
Diffusion merely smears the solliton, whlle an lnadequate reaction rate reduces the speed
and restricts the parameter exlstence range. Therefore, we assume that the diffusion 1is
sufficiently slow (v » 1) and that the reactions are so fast that n = n(®) at any in-
stant. Then

0 3o a
at op ot ' (18)
Y e an(@®)),  n(®)=[1+kexp(1/0)]-"

¥

We transfer to a frame of reference moving uniformly with velocity v, i.e., we in-
troduce a coordinate y = £ - vt, and conslder localized solutions stationary in that sys-
tem, which are deflined by the boundary-value problem

Opt+0v®,—@—]y=0,
Jy~—an(®}j; tor y—kem @,—0, (19)
for y—=—o0 jrf,

where jo 1s the dimenslonless radiation power at the input.

Two comments must be made before we calculate the soliton parameters.
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1. The homogeneous state having ¢ = 0 1s stable under small perturbations. One lin-
earizes (18) near ¢ = 0 and puts O(% v)=®,exp(prtist) to get p = -s.2 -1<90, 1.e., small per-

turbations are always damped, and soliton generatilon requlres a large initilal perturbation.
One can obtain a constraint on such excitation by integrating the first equation in (18)
wlth respect to £ and using the second:

Fom[js—j(+®)]=F, j(+o0)=j, exp(—aV);

s . (20)
Fo=Jo@ i Nw=a@oda

Then 1if initlally F(0)<i[i--exp(-aN(0))], F_ > 0 and the perturbations increase.

2. There is a radlation-power soliton-generation threshold, which we estimate by
:Ln}:vegrating (19) with respect to y on the basis that ¢ + 0 for y + =, Then je=j(+o)=t =

- j.(p('y)dy, where J(+=) 1s defined by a formula analogous to (20), and

Jo=F[1—exp(—aN) ]-*. (21)
The bound for integral N is *
+n +n ) .
. uly n
Nm dy = | —— —
.I_u(y) v=low O(y)dy<( 0).... F,
whilch glves
-1
o F[1-ew(-ar (%) )] (22)
. mas! 7

The right-hand side in (22) 1s a monotone functlon of F that attains its minimum value

[a(-%) l-l for F = 0, so (22) becomes

ra(g) >t (23)

That condition has a simple meaning: when (23) 1s obeyed, the heat-loss curve w, = ¢
intersects the heat-lnput curve wg,,=an(P)j, at three polnts, 1l.e., bilstablility occurs for
J = JO' We consider the maximum in &(y) (®,=0, ®,<0) to get a similar condition from (19):
(@/n(0)/0)ome, >1 .

We now derive the soliton speed and characteristic width, where we approximate n(%)
as a step function:

01 <06,

"(0)-{ 1, >0,

where on is the point of inflection. This applies for k « 1. Then 1if b > on for 0 £y <
< L, instead of (19) we have

Optv®,—0=0, y<0ana y>L,

Optv0,~D=—aj, exp(—ay), O0<y<L, (24)

whose solutions are linked up from the conditions for continuity in the temperature ¢ and
heat flux °y at the points y = 0 and y = 1 (at which ¢ = Qn). Also, we select solutlons

such that ¢ - 0 for y + #=, which gives us a transcendental equation for the soliton's
speed: .

M (1—M) = (1-M)r,
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in which

(p.+a) (p.—p-) p-+ta fo
M=1{- 5 = ¥ - —
! ag " p-ta & o,
— (25)
. P- vV 44
p++a 3 P’ 2 :

Flgure 3 shows v(g) derived from (25) for two characteristic Yalues of a. Out of
the two branches of v(g) (Ffor each ), one selects the bhysical one (solid lines), which
corresponds to the stable state. The second solution (dashed llnes) 1s unstable: any de-
viatlon from it leads to establishment elther of the homogeneous state op a soliton. It
is evident that v i1s always negative, so the soliton moves 1n the opposite sense to the
laser beam. The solutions exist only for radilation power levels exceeding a critical
value (which 1s dependent in particular on a), (25) readily glves the asymptotic v(g):
r==tay for g -+ «, or in dimenslional form )

Va—aV3l/xT,, (26)

Finally, from (24) one gets an expression for the soliton's width IL: L= (in ¥#)/(p,+a),
or for large g

Lx—vln(—-v/g)xVag In Vg/a. (27)

The soliton corresponding to the low-speed branch (dashed lines In Fig. 3) has speed
vy and width Ll as follows: - '

v ™=2/3g, Ly=2ga,

l.e., the slow soliton 1is also narrow, which determines the sensitivity to various fluc-
tuations and hence the instability.

Numerical estimates are as follows for typical values of the dqnstants: Tn = 400 K,
I 2.1073 W-cm’3-K'1, =1 cm2-sec"l, K = 2-10'4 w-cm°l-K-l,andx:=l cm'l,'wheré (23)
Adthn =1 and ¢ = ¢, glves I > 0.2 W-cm'a. With I = 10 W-cm-a, (26) gives V = 10 cm-
-sec‘l, while (27) after conversion to dimensional quantities gives L = 7 cm.

We have considered the situation where bistabllity occurs because of a reversible
‘eaction, but analogous results are obtalned for a chemically inert system whose absorp-
Avity varies rapidly with temperature. Similar equations apply also to an lonization
‘ave produced by a laser beam (see reviews [19,20]), for which also there are character-—
stle states of optical-discharge propagation of slow combustion type.

ONCLUSIONS

These results show that IR radiation can produce various nontrivial structures in a
as: oscillatory, soliton-type, and so on. An important common point here is that there
8 spatlial inhomogeneity in the laser beam. In the first example, the inhomogeneity is
ue to the finite diameter, and in the second to the attenuation on passage through the
edium. The inhomogeneity leads to qualitatively new structures lacking with homogeneously
lstributed intensity. From the formal viewpoint, when we introduce external Iinhomoge-
elty, we deprive the system of certain symmetries and thus life the degeneracy, which

Xtends the possible types of solution, although the number of phase variables 1s unal-
ered.

In nonlinear disslpative-system analysis, one frequently distinguishes [2] major
iriables (order parameters) and minor ones (subordinate). The first-group variables de-~
irmine the main behavior. One can thus say that introducing inhomogeneity increases the
imber of order parameters (major degrees of freedom).

As spatial inhomogeneity 1s characteristic of many systems, research on this class
3 very important to elucidating nonlinear-system self-organization.

We are indebted to 4. V. Sheludyakov and Yu. Yu. Morozov for assistance in the nu-
rical calculations.
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