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i INTRODUCTION 

I 
Here we consider some aspects of laser gas-mixture heating. The system exchanges 

energy with the environment and is thus dissipative. Various types of self-organization 
phenomenon occur in a nonlinear dissipative system, where stationary and nonstationary 
structures arise [1,21. The structures Gave fairly extensive attraction regions (in 

1 terms of the initial conditions) and may be considered as asymptotically stable proper 
states (.autostructures) . 

IR laser kinetics [31  can provide scope for simulating these phenomena, since one ' can vary the beam parameters to control the type of nonlinearity, which is a feature 
! usually representing some difficulty for other types.of system, and which substantially 
' restricts the types of structure that can be observed. 

Here we consider two types of structure occurring on IR irradiation: self-oscillatory 
and soliton-type ones. These correspond to nontrivial self-organization types and clearly 
demonstrate the wide scope for controlling system dynamics. 

I 
I 1 .  GAS-MIXTURE OSCILLATIONS 

Experiments have been reported [4,5J on the transmission of a continuous-wave c$- 
laser beam through a mixture of active and inert gases (SF6 + NH?, SF6 + air, and so on). 

- - - 
There is an incident-beam parameter range where one gets oscillatory power levels, where 
the characteristic oscillation times (10-100 sec) [4,51 indicate transport by diffusion, 
not by gas-dynamic processes. These oscillations have been ascribed [4-71 to thermal 
diffusion in the inhomogeneously heated gas, but there are alternative explanations, in ' 
particular due to local density change produced by temperature gradients. 

Consider the heating in an inert-gas mixture in a cell fairly thin along the beam 
axis. Let the beam be absorbed by one component. The heating in the beam region reduces 
the density by thermal expansion and thus reduces the amount of absorbing component, so 
the gas cools and the density rises again; the process then repeats. By analogy with 
[6,7], one can show that oscillations require a fairly high absorptivity temperature de- 
pendence, which is characteristic of many molecular gases in the IR range [8,91, and some- 
times one has 

A (n, T )  -PnN exp ( -T, /T) ,  p, T,-eonst, (.1) 

where N is density and n absorbing-component concentration. Let the radiation pass along 
the Y axis to a long ce1.l (along the XIY axis) that is thin along the Y axis and con- 
tains an inert two-component mixture. The temperature T and concentration n are described 
by 

Here a, K ,  and D are the thermal diffusivity, thermal conductivity, and diffusion co- 
efficient, while h is the cell thickness. The [-v(T-T,)I term describes the heat exchange 
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Fig. 1. a)'Time dependence of gas temperature at 
the beam axis derived from the exact system (curve 
1) and the.approximate one (curve 2); b) phase 
pattern for approximate system (8) for the case 
of Fig. la. Parameter values r - 3 ; b - i ; / - ~ ; s - 4 1 ;  
7-405; R h - 5 .  

with the environment, which has temperature Te. The intensity distribution I(x) is 

The local N after fast gas-dynamic relaxation is related to the local temperature by 
a 

(.Nh is the gas density in the homogeneous state). This follows from P = NkT, in which 

one takes P as constant throughout the cell. 

(2) neglects thermal diffusion and the diffusion-based themnal effect, which is ap- 
plicable for many gas mixtures [lo], although the converse situation can occur [ll]. 

We introduce the symbols , 

Then (1)-(4) becomes 

We supplement (6) with the boundary conditions corresponding to heat and mass insulation 
at the cell boundaries: 0,--QI-0 at E-*Rla. These conditions provide for conservation of 

the total amount of gas in the cell. In what follows, we are interested in the limit 
R + -. 

There is a notable feature. The above implies that the spatial inhomogeneity in the 
radiation field is important for oscillations to arise. It can be shown by analogy with 
[6] that homogeneous stationary states are stable and that oscillations will not be ex- 
cited for xo + -, i.e., for a homogeneous intensity distribution throughout the cell 
length . 

It is convenient to reduce (6) to a system of ordinary differential equations for 
analytic examination. We use a form of the Bubnov-Galerkin method [12] as employed in 
[ 61 :  we introduce the Galerkin coordinates @(T) and q(r) from 
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Fig. 2. Division of the {p, y )  parameter plane by curves representing the 
boundaries for the saddle points (1) and the stability boundaries for points 
not of saddle type (2). The dashed lines represent continuation of curve 2 on 
the saddle point surface, v(b + 1) = 10. 

Fig. 3. Soliton velocity v as a function of radiation power g derived from 
(25) for a of 1 (1) and 0.1 (2). The solid lines correspond to the stable so- 
lution and the dashed ones to the unstable one. 

The coordinates {#,  q) describe the gas temperature and the absorbing-component density 
at the axis CS = 0). One can simplify (7) further by introducing more complete sets 

ql), e.g., as coefficients in the expansion of and Q in terms of Hermitian poly- 

nomials : 

To obtain the required system, we restrict ourselves to the (7) approximation. We 
substitute ( 7 )  into (6) and multiply both equations in (6) term by term by exp(-t2) and 
Integrate with respect to 5 with limits -a to t m  to get . 

When the solutions to the exact system (6) and the approximate one (8) are compared, it 
is found that the simplified model gives a good qualitative description. 

Figure la shows $(T) and Q(0, T) for identical parameter values derived by numerical 
solution from (8) and (6) correspondingly, and Fig. lb shows the (8) phase pattern for 
the same parameter values. 

We examined (8) by standard methods from nonlinear-oscillation theory [13,143; Fig. 
2 shows a typical subdivision of the {u, y l  parameter plane into subregions differing in 
the number and stability'of the singular points. The existence boundary for the saddle 
points (curve 1) is given in parametric form by 

while the stability limits for points not of saddle type (curve 2 )  are given by 

(z = # / ( q  t 1) is a parameter). Table 1 classifies the singular points corresponding to 
the various subregions in Fig. 2. 



Table 1 

~ o t a  1. TM u w u  and towar r l l ~ u l r  wlms doneta t M  h b n 4 a m m u n  md IowLtmatun 
~ t l o n u y  mMlons to (8). 2 P a r  d k  wlnt (wnltn h rlwayrumrrar), wm g k .  t M  .rm of 
t~ c ~ ~ a e t u u k  pu.mmtr p, and pa. wnlck m Q.(IW w t o ~ m  Ir y(O1 and q(0) n ~ . r m  r 
r Qnrm rc.clonuy mlutlon, om u n  Ilmmrb (8) wlM n#a to t M  ma1 dwmlonr 4 - d o ) ,  - q 4 O )  utd w t  ( 4 ,  &a) - ap(pr). to p.( r c n u ~ t . r ~ e k  aarutbn tmm wnlcn D, and pa 
.n d w w a  

Oscillation requires y > 4 and ~ ( b + l ) > ~ r 4 . 8 .    hen as v and b increase (i.e., the beam 
2 radius increases; since b - x0), the oscillation region expands. 

Finally, without entering into details, we estimate the oscillation period in various 
limiting cases.: 

Typical values are D r 0.1 cm2-sec-' and xO r 0.5 cm, which give t - 15 aec. 
2. CH E H I C A L  S O L I T O N  , 

  not her type of dissipative structure is a traveling pulse, which we consider for IR 
heating in a mixture showing a reversible reaction. Such a gas on laser heating.at a 
suitable wavelength can show bistability [15,161, i.e., in a-certain'power range (wt<W<w8), 
there are two stable equilibrium states that differ in temperature and component concen- 
tration. The phenomenon has been examined in detail for an ideal-mixing reactor, for the 
case where the temperature and concentration gradients are negligible and the radiation 
attenuation on passage through the gas can be neglected. 

Numerical simulation has been used 1171 to examine the behavior of such a mixture on 
the basis of Bouguer attenuation but without allowance for heat and mass transfer. If 
the bistability conditions are met, the reaction is effectively localized in a bounded 
region 0 x 5 xk (x = 0 is the radiation entry point). Here we consider a similar system 
with allowance for thermal conduction and Bouguer absorption. 

The reaction Bat& occurs in a long thin cell' illuminated from the end with power 
V(l,V,). The concentration n of substance B2 is defined by a kinetic equation that ln- 
corporates diffusion: 

We assume that T1 > T2. In the homogeneous stationary state (nt = nM = O), n is 

where n(T) increases from 0 to (1 + k2/kl)-l as T increases. The radiation la absorbed 

only by B2. .Then the temperature is given by the conduction equation 

i T a8T 1 dI  11, 
--I------ 

a d t  dl' . x ds x (T-T.). 



where TI is the heat-loss constant per unit cell length. The intensity diminishes in ac- 1 
cordance with Bouguer's law: 

The phenomenon is as follows. At the start, the system is in the lower concentration 
and temperature state. If the medium is transferred to the upper state in some finite 
region, the absorption there increases and the gas begins to heat up. Adjacent regions 
also begin to be heated by thermal conduction and absorption. The darkening zone will 
enlarge until the radiation power after it becomes less than W1, the minimum necessary 

for bistability. The zone begins to move in the opposite direction to the beam, since 
conduction heats the region before it, which increases the absorption, while the region 
after it cools by heat transfer to the environment and thermal conduction. One thus gets 
a chemical soliton, namely a localized region in which the medium is in the upper (ex- 
cited) state. 

This effect occurs because of energy exchange with the environment (i.e., in a dissi- 
pative system) and thus differs from a soliton in a nonlinear conservative system; the 
parameters such as speed, width, and amplitude are independent of the initial conditions 
to a considerable extent. On the existing terminology C181, such a phenomenon is called 
a traveling pulse. 

To simplify the analysis, we now take subsequently that Te = 0, with-the cell taken 
..as long enough, where we introduce the symbols 

Then the initial equations become 

Thermal conduction and heat loss are the principal factors resulting in the soliton. 
Diffusion merely smears the soliton, while an inadequate reaction rate reduces the speed 
and restricts the parameter existence range. Therefore, we assume that the diffusion is 
sufficiently slow ( v  >>I) and that the reactions are so fast that n = n(@) at any in- 
stant; Then 

We transfer to a frame of reference moving uniformly with velocity v, i.e., we ln- 
troduce a coordinate y = 5 - VT, and consider localized solutions stationary in that sys- 
tem, which are defined by the boundary-value problem 

where jo is the dimensionless radiation power at the input. 

Two comments must be made befqre we calculate the soliton parameters. 



1. The homogeneous state having @ = 0 is stable under small perturbations. One lin- 

earizes (18) near 4 = 0 and puts @(E. 7)-0. exp(p+isE) to get p = -s2 - 1 < 0, 1 e., small per- 

turbations are always damped, and soliton generation requires a large initial perturbation. 
One can obtain a constraint on such excitation by integrating the first equation in (18) 
with respect to 5 and using the second: 

Then if initially F(0)<4(1--np(-d(0))], F > 0 and the perturbations increase. 

2. There is a radiation-power soliton-generation threshold, which we estimate by 
integrating (19) with respect to y on the basis that 8 + 0 for y + kw. Then i r - i ( i=)-FE 

+ "  - j , l ~ ( ~ ) d y ,  where j(+-) Is defined by a formula analogous to (20), and 

The bound for integral N is 

which gives 

5 1  The right-hand side in (22) is a monotone function of F that attains its minimum value 
3 I 

i, [a(;)_rl for l = 0, SO (22) becomes 
! 

c !  
A .: 
..z That condition has a simple meaning: when (23) is obeyed, the heat-loss curve wZ = @ 
ii! . intersects the heat-input curve w,-an(@)j, at three points, l.e., bistabllity occurs. for 

j = j .  We consider the maximum in 8(y) (@.-0. @.<O) to get a similar condltlon from (19) : 

(ain(@)l@)l-,,,. >i . 
$6 .. 
i.. We now derive the soliton speed and characteristic width, where we approximate n(8) 
I .  as a step function: 

where 8, is the point of inflection. This applies for k * 1. Then if '@ > an for 0 6 y < 

c L, instead of (19) we have 

whose solutions are linked up from the conditions for continuity in the temperature 8 and 
heat flux 8 at the points y = 0 and y = 1 (at which 8 = On). Also, we select solutions 

Y 
such that 8 + 0 for y + *w, which gives us a transcendental equation for the solitonls 
speed : 

Mm (I-W) - (i-M)r* 



in which 

Figure 3 shows v(g) derived from (25) for two characteristic Values of a. Out of 
:he two branches of v(g)  ( f ar  each a), one selects the physical one (solid lines), which 
corresponds to the stable state. The second solution (dashed lines) 1s unstable: any de- 
viation from Lt Leads to establishment either of the homogeneous state or a soliton. It 
Is evident that v is always negative, so the soliton moves in the opposite sense to the 
laser beam. The solutions e x l s t  only for radiation power levels  exceedlng a critical 
value(which is dependent in particular on a ) .  C.25) readily gives the asymptotic v(g) :  
r.2-tat for g 4 0 3 ,  or in dimensional fomn 

Finally, from (24) one gets an expression for the solitonfs width L: L-(lnX)l(p++a), 
or for large g 

La-o In(-ulg) =YG In Yg/a. (27 

The soliton corresponding to the low-speed branch [dashed lines in Fig. 3) has speed 
v1 and width L1 as follows: 

~ ~ - 2 / 3 g ,  L,sMga, 

i . e . ,  the slow soliton is also narrow, which determines the sensitivity to various fluc- 
tuations and hence the instability. ' 

Numerical estimates are as follows for typical values of the c-onstants: Tn z 400 K, 
-4 

7, - 2.10-~ W - C ~ - ~ . K - ~ ,  2 -  1 cm2-sec4, r = 2-10 ~-cm-l=~-',andizl cm-llwheie (23) 
41th n = 1 and I) = Pn glves I 0.2 ~ - c m - ~ .  Ylth I z 10 ~mcm-~, (261 gives Y ; 10 cm. 
.see-', while (.27) after conversion to dimensional quantitlea gtvss L r 7 cm. 

We have considered the situation where biitability occurs because of a reversible 
-eaction, but analogous results are obtained for a chemically inert ~ y a t e m  whose absorp- 
:ivity varies rapidly with temperature. Similar equations apply also  to an ionization 
:ave produced by n laser beam (see reviews [19,20]], for which also there a re  character- 
stic states or optical-discharge propagation of slow combustion type. 

These results show that IR radiation can produce various n~ntri~ial structures in a 
as: oscillatory, soliton-type, and so on. An important common point; here is that there 
B spatial inhomogeneity in the laser beam. In the first example, the inhomogeneity is 
ue to the finite diameter, and In the second to the attenuation on passage through the 
edium. The inhomogeneity leads to qualitatively new structures lacking with homogeneously 
Istrib~ted intensity. From the formal viewpoint, when we Introduce external. Inhamoge- 
e i t y ,  we deprive the system of certain symmetries and thus life the degeneracy, which 
%tends the possible types of solution, although the n ~ b e r  of phase variables is URal- 
hred . 

In nonlinear dissipative-system analysis, one frequently distinguishes 123 major 
ariables (order parameters) and minor ones (subordinate). The first-group variables de- 
'rmine the.main behavior. One can thus say that introducing inhomogeneity increases the 
lmber of order parameters (malor degrees of freedom). 

As spatial inhomogeneity is characteristic of many systems, research on this class 
5 very Important to elucidating nonlinear-system self-organization. 

We are indebted to A .  V. Sheludyakov and Yu. Yu. Morozov for assistance in the nu- 
?Pica1 calculations. 
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