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Simulation of growth in pyrolytic 
laser-CVD of microstructures- 
II. Two-dimensional approach 
N. Arnold and D. Biuerle 
Angewandte Physik, Johannes-Kepler-Universitiit Linz, A-4040 Linz, Austria 

Abstract. Pyrolytic laser-CVD of microstructures is simulated in a two-dimensional self- 
consistent numerical calculation. The model is applied to the deposition of spots and the 
direct writing of lines. 
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1. Introduction 

In previous papers we have investigated different theoretical descriptions of 
pyrolytic laser-induced chemical vapor deposition (LCVD). In one type of 
approach the temperature rise induced by the absorbed laser light on the 
surface of the deposited material is assumed to be known and independent of 
the geometry of the deposit. The reaction flux is then calculated by considering 
different types of gas-phase transport as well as heterogeneous or/and homoge- 
neous activation of the reaction. The main results achieved in these investiga- 
tions are presented in [l-4]. This type of approach, however, does not even 
permit a semi-quantitative analysis of the experimental data. The reason is the 
strong dependence of the laser-induced temperature distribution on the geome- 
try of the deposit. This has already been outlined in [5]. In a foregoing paper 
[6] we have accounted for this problem within the framework of a one- 
dimensional model. This model can be applied to laser direct writing. Here, the 
equation of growth was solved simultaneously with an analytic equation that 
approximates the laser-induced temperature distribution on the surface of the 
deposited stripe. 

In the present paper, we present a two-dimensional self-consistent calcula- 
tion of the equation of growth and the heat equation. Clearly, only numerical 
techniques can be employed in this case. As in [6], we assume a purely 
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heterogeneous reaction and ignore any gas-phase transport. Even with these 
assumptions, considerable computational efforts are required. Examples for the 
simulation of growth of spots and the direct writing of lines will be presented. 

2. Model 

The model employed in the calculations is schematically shown in Fig 1. 
The deposit is placed on a semi-infinite substrate; the respective thermal 
conductivities and temperatures are denoted by K,,, T, and K~, T,. For the 
same reasons as in [6] we consider the case K * = KJK~ % 1. The origin of the 
coordinate system is fixed with the laser beam and indicated by a dot. In the 

LASER BEAM 

Fig. 1. Schematic picture of a two-dimensional model for the description of pyrolytic laser-CVD. 
The origin of the coordinate system is indicated by the dot. The surface of the deposit is 

described by h(x, y). fi is a unit vector normal to h(x, y). 
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case of direct writing, scanning shall exclusively be performed in the x-direction 
with the velocity us. The shape of the deposit is described by an arbitrary 
function h(x, y) with 0 < z < h(x, y). 

2.1. The heat equation 

The temperature distribution induced by the absorbed laser light can be 
calculated from the boundary-value problem 

aTD 
CDPD at -VX[KD(TD)V~TDI= Q(x, Y,z,t) y (1) 

aTD 
KD(TD) x z=. = Jloss(~ = 0) Y 

aTD 
-KD(TD) x z=h = Jloss(~ = h) . 

cD is the specific heat and pD the mass density of the deposit. The index 3 at the 
nabla operator stands for the three dimensions. Q is the source term, and J,,,, 
describes the energy loss at surfaces z = 0 and z = h. The unit vector ri = n/I n) 

is directed normally to the surface z = h(x, y) so that n = { - ah/ax, - ah/ 
dy, l}. In principle, the boundary-value problem (l), together with the corre- 
sponding equations for the substrate, and the equation of growth (Section 2.2), 
can directly be solved numerically. It is, however, more convenient to use some 
further approximations and transformations. 

The integration of (1) within the region 0 < z B h yields 

aTD 
'DPD atdZ= KD(TD) $+ 

+ fob V,[K,(T,)V&] dz + J1: Q<x, Y, 230 dz . 
(2) 

We now make the following assumptions: The deposit shall be flat, so that 
dhldx ==s 1. Thus, 

aT, aT, -=- 
a2 a.2 

-V,h V,T, ~ 

Furthermore, we assume TD = T,(x, y, z, t) = T,(x, y, 0, t) which holds if 
h / [ rD K *] 4 1 (this follows from KD aT,/a2= KSaTs/a2 and aiya2- 
[ T,(z = 0) - T(m)] /I~). In this case we can expand TD in a Taylor series and 
take into account only the first term 

TD(z) = TD(z = 0) + O(z) . (4) 

With these approximations (2) can be written as 
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+ I : Q 
Equation (5) is just the energy 
with a basal area dx dy and a 
simplifying assumptions: 

dz - J,oss(z = h) - J,o\\(z = 0) . (5) 

balance for a volume element of the deposit 
height h(x, y). We now make some further 

(i) Growth shall be quasi-stationary. Thus, the time to reach thermal 
equilibrium is rT 4 [d(ln h) /at]-‘. For the same reason, we ignore any changes 
in temperature distribution due to the scanning of the laser beam. 

(ii) Heat losses to the gas phase shall be ignored, i.e. JloSS(z = 12) = 0. At the 
interface 2 = 0 we set 

Jdz = ‘4 = K&J 2 /i_(l . (6) 

(iii) We assume that the laser light is totally absorbed within the deposit, i.e. 

Q d.z = (,(x, y) = A&c y) , (7) 

where A is the absorptivity. By introducing the linearized temperatures $ and 
0, via the Kirchoff transform, we obtain from (5)-(7) 

%uw 2 z=. = h(X, Y> + ‘b(T(m))V,[h(x, y)v,%l (8) 

The second term on the right side originates from the “lateral spreading” of the 
surface temperature $ due to the deposit. Equation (8) can be considered as a 
modified boundary condition for calculating the (stationary) temperature dis- 
tribution in the substrate. This is given by the Laplace equation 

v&=0. (9) 

Using the Green’s function technique, the solution can be written in the form 

x [[x - XI]* + [y - y’]’ + z*]-“’ dx’ dy’ . (10) 

For the surface z = 0 this becomes 

where r is a two-dimensional radius vector within the xy-plane and * denotes 
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the convolution integral 

{f*g}=[_; j-f(r’)+‘)dx’dy’. 

Thus, (8) yields 

es = eo, + K*!p) {V*[hV,$] * fi] ) 
r 

(11) 

where 

1 

@= 21TKS(7-(9) 

is the (linearized) temperature distribution without the deposit; 8: remains 
unchanged during the growth process as long as the absorptivity, A, stays 
constant. If A changes, (11) is still valid. In this case, however, the computa- 
tional time will increase significantly. Clearly, at z = 0 the temperatures 0s and 
$ are related via the condition 

T,(G)= q(es) at 2=0. 

As a consequence we have 

4 = e&b) . (12) 

This dependence can be rather complicated (it is always monotonously increas- 
ing) and it is therefore convenient to draw a parametric plot in the (es, %)- 
plane. The dependence es(%) is then fitted by a polynom of the form 

With this substitution, (11) becomes a nonlinear integro-differential equation 
for the determination of 0,. In the absence of the deposit (h = 0), equation 
(11) describes the linearized temperature on the surface of the substrate. If 
h # 0, the second term in (11) is non-zero. The real temperature is obtained 
from the inverse Kirchhoff transform after solving (11). Thus 

The advantage of solving (11) instead of the original boundary-value problem 
(1) is: 
- It is two-dimensional, but describes the temperature distribution of a three- 

dimensional problem. 
- No boundary conditions must be considered. They are included implicitly in 

6s and (&. 
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- Any temperature dependences in K~ and KS can easily be taken into account. 
- It is sufficient to confine the convolution integrals to the region where h # 0 

and Z, # 0. 

2.2. Equation of growth 

In the coordinate system fixed with the beam the shape of the deposit can 
be described by 

dh ah 
t = WT,) + us jy 

The growth rate W(T,) follows an Arrhenius type law 

W(T,) = k,, exp - ( %I[ 1 + expc ‘tk,th’D)]P’ , 

(13) 

(14) 

where k, is the usual pre-exponential factor in the Arrhenius law, and 
AE* = AElk, the apparent chemical activation energy in kelvin. The addition- 
al factor in (14) shall account for the threshold behavior of the deposition 
process, i.e. for the fact that deposition becomes significant only if T, exceeds 
the threshold temperature, Tth. The width of this threshold, which describes 

the drop in deposition rate near Tth, is denoted by 6T,,. The boundary and 
initial conditions for (13) are usually characterized by h = 0. 

3. Numerical procedure 

The numerical calculations of the temperature distribution-with stationary 
shape of the deposit-are performed by employing the following iteration 
procedure 

where i denotes the step of iteration. The last term was discretized by 

employing the finite difference technique. The coefficient c > 0 determines the 
convergence of the iteration procedure. 

Equation (13) was solved by splitting the process of growth and advection 
(scanning). The growth of the deposit, which is determined by the first term in 
(13), was simulated by an implicit scheme with respect to the height, h, as a 
function of time, t. This scheme was solved using an iteration procedure with 
respect to h. After each step of iteration for the height h, the temperature 
distribution was recalculated from (15). Iteration was stopped when changes in 
subsequent h-iterations became sufficiently small. The time step for advection 
(second term in (13)) was chosen in the usual way for upwind schemes, 
r = Ax/us, and was much larger than the step for growth. 
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4. Simulation of growth 

49 

The model calculations shall now be applied to the deposition of spots and 
the direct writing of lines by pyrolytic laser-CVD. As practical examples we 
choose the deposition of W and Ni onto quartz (SiO,) substrates. The 
substrates employed in the experiments were frequently coated with a thin film 
of sputtered W or amorphous Si (typically 700 to 1200 A thick) [5,7,8]. Such a 
film permits a well-defined initiation of the deposition process [5]. Its influence 
on the temperature distribution has been ignored in the present calculations. 

For convenience, we introduce normalized quantities and indicate them by 
an asterisk. h, x, y, us, and k, are normalized to the radius of a Gaussian laser 
beam, wO. Correspondingly, all temperatures and activation energies are 
normalized to the temperature T(w). The normalized intensity is ZG = Z,w,l 

vv9~Sv@))1~ 

4.1. Growth of spots 

Figure 2 shows the (normalized) height of W spots calculated for various 
stages of growth as a function of the (normalized) distance from the center of 

RADIUS r* - 
0 1 2 3 4 

RADIUS r*- 

Fig. 2. Normalized height of W spots calculated for various stages of growth as a function of the 
(normalized) distance from the laser-beam center. The parameters employed are typical for 
laser-CVD of W from WCl, + H, (see text). The lower part of the picture shows the evolution of 

the (normalized) surface temperature distribution. 
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the laser beam. The kinetic data employed, kg = 2.14, AE* /7’(a) = 5.68, were 
taken from experimental investigations on the deposition of W from WCl, + H, 
[7]. The other parameters used were TthlT(m) = 2.71, 6T,,/ T(a) = 0.01, 
K*(T(~)) = 50.56, AI;F = 10.3. The thermal conductivity of the deposited W is 
approximated by K~(W) = c, + c,/T - c3/T2, where c1 = 42.65 W m-‘K-l, c2 = 
1.898 X lo4 W m-l and c3 = 1.498 x lo6 W m-’ K. This corresponds to one half 
of the heat conductivity reported in [9]. For the SiO, substrate we choose 
Ks(Si02) = a, + a,T, with a, = 0.9094 W m-l K-’ and a2 = 1.422 X lop3 
W m-l K-* [lo]. Using the Kirchhoff transforms we can approximate the 
relations between dimensionless quantities 

and 

T; = 1 + @; + 0.12 0;’ . 

The accuracy of this approximation within the temperature interval T(m) = 
443Ks T ,, s 2500 K is 2-3%. Figure 2 demonstrates the very fast spreading in 
the lateral direction. The velocity of lateral growth is strongly influenced by the 
width of the threshold, 6T,,. The saturation in spot diameter, which occurs 
when the temperature near the edge of the spot becomes smaller than the 
threshold temperature for deposition, is in agreement with experimental obser- 
vations [7]. It becomes evident that the saturation in width takes place much 
faster than the saturation in height. The change in the (normalized) tempera- 
ture distribution during the growth process is shown in the lower part of the 
figure. It shows that within a short time the surface temperature becomes 
almost uniform over the surface of the spot. 

Figure 3 shows the growth of Ni spots deposited from Ni(CO),. In this case 
the thermal conductivity of the deposited Ni and of the substrate was kept 
constant with K*(T(@J) = 300 K) = 30. The other parameters employed in the 
calculations were T(m) = 300 K, kg = 1.1 x 1013, AE* /T(m) = 45 and AI; = 
1.33. No threshold was assumed so that T,,/ T(a) = 1. The kinetic parameters 
correspond to the pyrolytic decomposition of Ni(CO), [5]. Due to the absence 
of a threshold, there is no abrupt saturation in the width of Ni spots. 
Furthermore, the ratio of spot height to spot width is much larger than in the 
case of W. This is related to the much higher activation energy, AE * ; it yields a 
significantly higher growth rate in the center than near the spot edge. This 
behavior is in qualitative agreement with experimental observations [5,11]. 
The change in temperature distribution related to the growth of the spot is 
similar to that observed for W. 

4.2. Direct writing of lines 

Figure 4 shows contour lines (left side) and isotherms (right side) calculated 
for various stages of direct writing of W lines deposited from WCl, + H,. The 
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RADIUS r*- 
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Ni 

Fig. 3. Same as Fig. 2 but for Ni spots deposited from Ni(CO),. 

~*=CONST. TkONSl 

CONTOUR LINES TEMPERATURE PROFILES 

Fig. 4. Contour lines (left side) and isotherms (right side) calculated for W stripes produced by 
laser direct writing. The laser beam is switched on at t = 0. 

laser beam is switched on at time t = 0. The scanning velocity employed was 
vg = 2.0, and the absorbed laser-beam intensity AZ: = 20.6. The other parame- 
ters are the same as in Fig. 2. The figure shows that the stationary solution is 
achieved only after a rather long time. The larger width of the stripe observed 
in the initial phase of growth (short times) is related to the fact that energy 



52 N. Arnold, D. Biiuerle 

losses due to heat conduction 
behavior becomes evident also 
experimental observations. 

I Simulation of pyrolytic laser-CVD-II 

along the stripe are not yet effective. This 
from the isotherms. It is in agreement with 

Figure 5 shows the stationary shape of a W stripe and the corresponding 
temperature distribution for a scanning velocity ug = 3.0. The other parameters 
employed were the same as in Fig. 4. Within the regime of parameters 
investigated, the shape of calculated W stripes remains always uniform, i.e. it 
shows no oscillations in height or width [5, 121. 

Calculations of the kind presented in Figs. 4 and 5 permit to derive the 
parameter 5 = r,la for different scanning velocities (see also [6]). Here, a is 
the distance between the center of the laser beam and the tip of the stripe. 
From these calculations we find 1.2 < 5 < 1.5. This value is consistent with the 
experimental results reported in [6]. 

Figure 6 shows the height (indicated by + ), the width ( x ), and the center 
temperature (*) calculated as a function of scanning velocity, us. For com- 
parison, the corresponding dependences obtained from the one-dimensional 
model [6] have been included by full, dashed, and dash-dotted curves. The 
parameters employed were w0 = 7.5 pm, K~(T(~)) = 0.0154 W cm-’ KP’, Al: = 
20.6 (P = 0.6 W, A = 0.55). The other parameters were the same as in Figs. 
2, 5 and 6. For the one-dimensional model we used ~~(1600 K) = 

Fig. 5. Stationary profile of the (normalized) height of a W stripe and the corresponding 
temperature distribution. 
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Fig. 6. Dependence of the height (+), width ( x ) and (normalized) center temperature (*) on 
scanning velocity as calculated from the two-dimensional model. For comparison, the corre- 
sponding dependences obtained from the one-dimensional model [6] have been included by full, 

dashed, and dash-dotted curves. 

0.032 W cm-’ K-‘, k, = 16.05 pm/s, K * = 17, n= 1.6, y=1.3, [=1.25, and 
5 = 4/3 (see [6]). The discrepancy between the two models is about 30%. 

5. Conclusion 

Two-dimensional model calculations for pyrolytic laser-CVD permit to 
simulate both the growth of spots and laser direct writing. The shapes of 
deposits calculated for different systems are in semi-quantitative agreement 
with those observed experimentally. 
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