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ABSTRACT 
In order to understand how large biomolecules, such as 
proteins, function as miniature machines, we need to 
compute the motions within these molecules. These 
molecular dynamics computations have been performed 
by evaluating the force on an atom, determining how far 
that force moves the atom in a time step, and repeating 
this procedure many times. However, because the forces 
change when the structure changes, these time steps must 
be kept very small, typically s. Thus, it has not 
been possible to compute motions over the millisecond 
time scale that is bioIogicalIy important. Neural 
networks share many properties with large biomolecuIes 
such as multiple energy minima, frustration, and 
ultrarnetricity. Thus, n e d  networks may provide a 
more natural and thus a more efficient method to 
compute molecular dynamics. We show how to 
construct a neural network that is analogous to a given 
molecule so that the dynamics of the neural network can 
be used to compute the dynamics of the molecule. The 
spatial structure of a molecule is encoded in the values 
of the nodes of the neural network and the energy 
structure of the molecule is encoded in the connection 
strengths between the nodes. As the network evolves in 
time it therefore computes the changing structure of the 
molecule. We illustrate these ideas by using a Hopfield 
network to compute the structure of cyclohexane 
switching from a chair to a twisted boat conformation. 



INTRODUCTION 

Motions in large biomolecules such as proteins are important in how 
these molecules function as structural units, catalyze chemical 
reactions, and bind ligands (Karplus and Petsko, 1990; McCamrnon and 
Harvey, 1987; Welch, 1986). To compute the spatial positions of the 
atoms of a protein as a function of time the standard method has been: 
1) evaluate the force on an atom due to all the other atoms, 2) move 
that atom appropriately, and 3) repeat steps 1 - 2 many times (Karplus 
and Petsko, 1990; McCarnmon and Harvey, 1987). The limitation of 
this method is that the time steps must be kept very small, typically 
10-l5 s, so that the forces do not change during the time step. Thus, it 
is not possible to compute the motions over milliseconds or seconds 
that are of interest, for example, in our patch clamp experiments 
where we measure the durations of the open and closed states of ion 
channels in the cell membrane (Liebovitch et al., 1987; Liebovitch and 
Sullivan, 1987; Liebovitch, 1994). 

By transforming one problem into another mathematically 
equivalent problem, we c q  sometimes find a much more efficient 
computational algorithm. For example, the usual algorithm for 
multiplication is to multiple the first number by each digit of the 
second number and sum these results multiplied by the place value of 
the digit of the second number. People typically use this algorithm to 
the base 10 and computers rypicaIly use this algorithm to the base 2. 
For numbers with N digits this algorithm requires approximately N~ 
arithmetic operations. Another algorithm for multiplication is to 
compute the inverse fast Fourier transform of the convolution of the 
fast Fourier transforms of the bit patterns of the two numbers. This 
algorithm requires approximately N*log(N) operations. When 
multiplying two numbers with a million digits, and this is done for 
example when computing .x: to a million decimal places, this second 
algorithm is approximately 100,000 times faster than this first 
algorithm. 

Computing molecular dynamics is slow since the time steps must 
be kept very small because the protein is always changing too fast and 
thus escaping from the computation. Our approach is to transform this 
problem into another computational structure that is a more natural fit 
to the protein, so that we can develop a more efficient computational 
algorithm. Proteins share many properties in common with neural 
networks. Hence, neural networks may provide a more efficient 
method to compute molecular dynamics. 
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NEURAL NETWORKS AND MOLECULAR DYNAMICS 

A neural network consists of nodes and connections between them 
(Amit, 1989; McClelland and Rumelhart, 1989; Domany et al., 1991; 
Freeman and Skapura, 1991). Each node has a value. At each time 
step, the new value of a node depends on the values of the other nodes 
and the strengths of the connections between them. 

A neural network is like a large biomolecule, such as a protein, in 
a number of different ways (Karplus and Petsko, 1990; McCammon 
and Harvey, 1987; Welch, 1986; Fraunfelder, 1986; Sasai and Wolynes, 
1990; Frauenfelder, et al., 1991; Wolynes, 1991). A neural network 
has many nodes. The protein has many atoms. The nodes of a neural 
network can interact with each other at short range or long range. 
This is analogous to the short range atomic bonds and long range 
electrostatic forces in a protein. In both neural networks and proteins 
local interactions generate the global structure. The neural network is 
a "frustrated" system. That is, there are conflicting constraints on the 
values of the nodes so that there is no single energy minima. The 
protein is also a "frustrated" system. Sidechains, regions, and subunits 
can have multiple orientations in space that conflict with each other so 
that there is no single energy minima. Because of these conflicting 
constraints, neural networks have an energy function with many, local 
energy minima. Similarly, proteins also have a potential energy 
function with many, local energy minima which correspond to similar, 
but not identical, conformational structures. Because of this complex 
energy surface, the energy structure of a neural network is 
"ultrametric", that is, the energy of the network may need to increase a 
little before it can decrease. Similarly, a protein may need to increase 
in energy, by unfolding slightly, before it can decrease in energy by 
refolding into a different conformation. 

To use a neural network to compute molecular dynamics we: 
1) encode the spatial structure of the molecule in the values of the 
nodes of the neural network, 2) encode the energy structure (or force 
structure) of the molecule in the connection strengths, 3) update the 
values of the nodes, and 4) as the values of the nodes change they 
compute the changing structure of the molecule. 

HOPFIELD NETWORK TO COMPUTE MOLECULAR 
DYNAMICS 

A Hopfield network (Hopfield, 1982, 1984; Hopfield and Tank, 1986) 
is one type of neural network that can be used to compute molecular 
dynamics. In this network all the nodes are connected to all the other 
nodes. The connection strengths are symmetric (Jij =Jji) which implies 



that a thermodynamically valid energy function can be defined. 
To determine the connection strengths we choose a set of p 

memories that correspond to the stable conformational structures 
and/or the transition states of the molecule. Each such memory p 
consists of a set of N values 5 of the N nodes, namely 

The connections strengths are then determined from these memories 
P 

where ap is the energy associated with the conformational structure of 
memory CL. 

CYCLOHEXANE 

As a test of this method we used a neural network to compute the 
molecular dynamics of cyclohexane. Cyclohexane is a small molecule 
consisting of a ring of 6 carbon atoms and their attached hydrogen 
atoms. It has three basic conformational structures: a chair 
conformation which is the most stable state corresponding to the 
deepest local minima in the potential energy function, a twisted boat 
conformation which is a slightly less stable state corresponding to a 
more shallow local energy minima, and a boat conformation which is a 
metastable state corresponding to a saddle point in the energy function 
(Pickett and Strauss, 1970). Due to thermal fluctuations the molecule 
is constantly switching between its chair and twisted boat 
confonnational states. 

To compute the dynamics of this molecule we used a Hopfield 
network with 24 nodes. 

To encode the spatial structure the nodes were distributed equally 
around the central plane of the molecule. If the bond connecting two 
carbon atoms was above the plane at the position of a node, then the 
value of that node was +l. If the bond connecting two carbon atoms 
was below the plane at the position of a node, then the value of that 
node was -1. 

To determine the connection strengths we used the 4 memories 
that correspond to the 1 unique chair and 3 unique twisted boat 
conformational states. The energy of the least stable transition state 
was defined to be zero. With respect to this state, it is known that the 
energy of the chair is -14.5 kcaVmol and the energy of the twisted boat 
is -6.5 kcaVmol (Pickett and Strauss, 1970). The connection strengths 
were then determined from these 4 memories and their associated 



energies. 
The nodes were updated using Glauber dynamics. 
The first result we found was that even though the network was 

constructed with memories representing only the chair and twisted boat 
states, nonetheless, the network also contains the boat state. The neural 
network even correctly predicts the approximate energy value of the 
boat conformation. The energy computed by the neural network is 
-4.8 kcal/mol compared to the measured energy of -6.0 kcalfmol. The 
boat arises out of the interactions of the chair and twisted boat 
memories. A property that arises from such interactions is called an 
emergent property. The few memories chosen to represent the 
molecule have captured the natural form of the molecule. The neural 
network reproduces additional properties of the molecule that may 
appear distinct to us, but are actually emergent properties of the stable 
conformational states of the molecule. Instead of thinking of a protein 
as a very complex potential function, we can think of it as constructed 
from a small set of "memory" structures. The interaction between 
these memory structures then produces the complex potential. 

We evolved the network in time long enough to follow the 
changing structure of cyclohexane through 10,000 switches between 
the chair and twisted boat conformations. The computation time 
depended on the temperature assumed for the molecule. At room 
temperatures, the run through 10,000 switches required approximately 
15 minutes on a Silicon Graphics IRIS workstation. From the dwell 
times in each state we then computed the distribution of dwell times 
(first passage times) for the chair and twisted boat states. These 
distributions are analogous to the open and closed dwell time 
distributions of ion channel proteins that we measure in our patch 
clamp experiments (Liebovitch et al., 1987; Liebovitch and Sullivan, 
1987; Liebovitch, 1994). 

We chose cyclohexane because there is good nuclear magnetic 
resonance experimental data (Anet and Bourn, 1967) and other 
molecular dynamics simulations (Elber and Karplus, 1987) of this 
molecule. Thus, we hoped to compare the results of our neural 
network method with these lmown results to determine if our new 
method worked. However, we could not do this because: 1) we couId 
not determine the physical time in seconds that corresponds to each 
updating step in the neural network and 2) we could not compare the 
shape of our dwell time distributions to the previous results because 
our results extend over a much larger range of time scales than has 
ever been measured experimentally or computed by other methods. 
Details of these calculations as described in Liebovitch et al. (1994). 

This work was supported in part by NlH grant EY06234. 
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