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ABSTRACT 

Large molecules such as proteins have many of the properties of neural networks. Hence, 
neural networks may serve as a natural and thus efficient method to compute the time 
dependent changes of the structure in large molecules. We describe how to encode 
the spatial conformation and energy structure of a molecule in a neural network. The 
dynamics of the molecule can then be computed from the dynamics of the corresponding 
neural network. As a detailed example, we formulated a Hopfield network to compute 
the molecular dynamics of a small molecule, cyclohexane. We used this network to 
determine the distribution of times spent in the twist and chair conformational states as 
the cyclohexane thermally switches between these two states. 

Keywords : Neural network, molecular dynamics, kinetics, protein motions, cyclohexane. 

1. Introduction 

In different scientific fields a new type of model has been useful in understanding 
how global properties of a complex system arise from the interplay of many local 
interactions. In psychology these models are called neural networks [1,19]. In 
computer science they are called parallel, distributed processing [34,35]. In physics 

I 
they are called spin glasses [2,9]. A neural network, for example, consists of nodes 
and connections between them. At each time step the value of a node is updated. 
The new value depends on the values of the other nodes connected to it and the 
strength of their connections. 

I Large molecules, such as proteins, also consist of manv interactine: ~ i ece s .  An - " A  

ion channel protein, for example, has approximately a 1000 amino acid residues 
that interact by atomic bonds and electrostatic forces. Proteins have many of the 
characteristics of neural networks such as: frustration, energy landscapes with many 
local minima and ultrametricity [11,12,25,33,41,47,48]. In a protein, sidechains, 
regions and subunits can have multiple orientations in space that conflict with each 
other. There is no one structure that can satisfy all these conflicting constraints 
to uniquely minimize the energy. This property is called "frustration." The large 
number of different possible structures corresponds to an energy landscape with 
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many local minima. In changing from one conformational state to another, the 2. 
protein must temporarily increase in energy to cross the hills in the energy landscape 
separating those states. That is, the protein structure needs to unfold slightly before 2.1 

it can refold in a different way. This property is called "ultrametricity." As 

Neural networks have been used as computational devices to  predict the sec- 
ondary structure of a protein (&-helix, P-sheet, etc.) from the primary sequence (su 
of amino acid residues 15,391. Because of the common features between neural net- W? 

works and proteins described above, neural networks have also been used as physical nei 

models of the structure and thermodynamical properties of proteins [11,12,41,48]. bet 

In this article we present a new application of these common features. We show how 
to construct neural networks with an energy structure similar to  a given molecule, 
so that the dynamics of a molecule can be computed from the dynamics of the 
corresponding neural network. This approach leads to  a new way of thinking about 
molecular dynamics. It may also lead to the development of faster algorithms to 
compute molecular motions. 

Protein motions are important in how proteins function as structural units, 
how they catalyze chemical reactions and how they bind ligands [12,25]. Protein 
motions are now calculated by evaluating the force on each atom, updating its 
position and then repeating this procedure many times 1331. However, these time 
steps must be very small in order to accurately compute the new positions of the 
atoms. The 100 000 time steps needed to compute the motions of myoglobin over 
10-lo s required 6 hours of supercomputer time [25]. Thus, this presently used 
approach is inadequate to  study important motions within proteins that extend 
from nanoseconds to minutes. 

Transforming a problem into a different but mathematically equivalent form 
can sometimes lead to  a much more efficient computational algorithm. For exam- 
ple, recent box counting algorithms have reduced the computational time for fractal 
dimensions by three orders of magnitude [4,24,30]. Because neural networks and 
proteins share common features, the neural network is a natural representation, 
and thus may be a much more efficient method for the computation of molecular Fi 

co 
dynamics. Moreover, neural networks may achieve additional gains in computa- 

110 

tional speed because they are simple and intrinsically parallel structures that can th 

take good advantage of computers with parallel architectures and custom integrated 
circuits. 

In this article we explore the use of neural networks to compute molecular dy- re 
narnics. First, we outline the properties of neural networks. Then we describe ai 

different ways that neural networks can be formulated to  compute molecular dy- at 
narnics. We then present a detailed formulation and analysis of the properties of 
one type of network, the Hopfield network, and show how it can be used to  compute Ir 
molecular dynamics. As an illustrative example, we used a Hopfield network to  com- fi 
pute the dynamics of cyclohexane switching between twist and chair conformational ( 
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2. Formulation of Neural Networks to Compute Molecular Dynamics 

2 . ~  ~ e u r a l  Networks 

As rf,own in rig. 1, a n e ~ u i d  nel.work consists of nodes connected to  other nodes 
j ~ , g , l ~ , ~ ~ ] .  Ew11 node h ~ s  a valnc associated with it. These values may be discrete 

-1 or +I) or c~nt~ in l~ous .  The nodes can be connected together in different 
wgP, Each node may he connecla~l b d l  the other nodes, or to only its nearest 
,,,;pltl,ors, or ('hey may be organized into a layered structure, so that only nodes 
between adjacent layers are connected. 

Fig. 1. Schematic representation of a neural network. The network consists of nodes (circles) and 
connections (arrows) between them. Each node has a value associated with it. The value of ith 
node is equal to Si. At each time step, the value of a node is updated. The new value depends on 
the values of other nodes, such as Sj, and the strength Jij of the connections between them. 

Between any pair of nodes, the connection strengths can be equal in both di- 
rections (symmetric) or unequal (asymmetric). The connection strengths can be 
assigned directly, or determined by a learning procedure where the strengths are 
adjusted so that the network produces the required output for a given input. 

The values of the nodes can be updated continuously or a t  discrete time steps. 
In the case of discrete updating, the new value of a node (Si) at  each time step is a 
function of the values of the other nodes (Sj) and the strength of the connections 
( J i j )  between them. This function may directly determine the new value of the 
node or determine the probability that the node has a certain value. 
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In order to  use a neural network to compute molecular dynamics we must: 
\ I  

(1) encode the spatial structure of the molecule in the values of the nodes, 
(2) determine the topology and the strengths of the connections between the nodes 
so that the network has the same energy structure as the molecule, and (3) update 

I 

the values of the nodes in a way that includes both the influence of thermal fluctu- 
ations due to the interaction with environment and the forces within the molecule 
that are modeled by the connection strengths. The output of the computation is 
the value of the nodes, and thus the spatial structure of the molecule, as a function 
of time. 

We now consider these issues of determining the encoding, the connection 
strengths, and the updating method. 

2.2.  Encoding the Spatial Structure 

The structure of the molecule needs to  be represented in the values of the nodes of 
the neural network. This can be done in different ways. The method chosen will 
be most efficient when the encoding is based on the form of the molecule. It should 
also be chosen so that it simplifies the computation of the energy of the network. In 
a protein, for example, the values of the nodes can encode the spatial positions of 
atoms, amino acid residues, or subunits of the molecule. In each case, the values of 
the nodes can represent either the spatial coordinates, the angles between the units 
(such as the 4,  11, angles between amino acid residues), the coefficients of a series 
expansion of the spatial positions based on polynomial splines [42,43], or Fourier 
components [49], or a number identifying the spatial location corresponding to a 
conformational state (such as -1 if an ion channel protein is closed and $1 if it is 
open). 

It is important that the change of a value of one node should correspond to a 
small change in the spatial structure of the molecule. For example, a poor encoding 
would be one where the coordinates of the positions of each atom are represented 
by the binary number formed from a set of nodes, each of which has the value 0 or 
1. The problem with this encoding is that a change in the value of only one node 
in a position corresponding to a high power of 2 will produce a large change in the 
number denoting the spatial position of the atom in the molecule. 

2.3.  Topology and Connection Strengths 

We studied three types of neural networks to  compute molecular dynamics: activa- 
tion networks, layered networks and Hopfield networks. 

In the activation network all the nodes are connected to each other. The values 
of the nodes (Si) are typically continuous and the connection strengths are typically 
asymmetric (Jij # Jj i ) .  These networks were developed to describe the behavior 
of the brain in analyzing sensory input [7]. In that case, the values of the nodes 
correspond to the strengths of characteristic features [34]. These networks are 
also useful for classifying data into clusters with different characteristics [26]. In 
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,.,,,nput,ir~g niolec~~lnr dynarnica, the connection strengths are determined from the 
innspn~e  of one node on another. For example, if the nodes are atoms, the strengths 
c, be nlde prnportional t80 the b rce  of one atom on another. If the nodes are 
*.,in0 acid residues, !Be ~t,rengths are proportional to the interactions between 

P airs residues that can he tlcsc.rihed by a two dimensional connectivity matrix 
rfi,~~.-l]. In sonle preliminary atildica we used an activation network to  compute the 

of cyclohcxane I)ct#ween its t\w ist and chair conformational states. Each 
node corresponded to one of the six carbon atoms. The value of each node was 1 if 
the carbon atom was closer to its position in the twist configuration and -1 if the 

atom was closer to  its position in the chair configuration. The connection 
strengths were determined from the change in energy computed by the program 
Insight I1 (Biosym Technologies Inc.) when the position of one atom at a time was 

In the layered network with three layers, a layer of input nodes connects to  a 
middle layer of nodes, which is in turn connected to an output layer of nodes [13,35]. 
The middle layer is called a hidden layer because it is not connected directly to the 
input or output signals. The values of all the nodes are typically continuous. The 
connection strengths are typically asymmetric. The values of the output nodes are a 
nonlinear function of the values of the input nodes. These networks were developed 
because networks without a hidden layer could not compute some simple functions 
(such as the output of the exclusive "or" function from two input values). The 
hidden layer usually has fewer nodes than the input layer. Thus, the hidden layer 
extracts the characteristics of the input and presents them as a smaller number 
of input values to the output layer. These networks are popular in applications 
because the connection strengths do not have to be computed explicitly. They 
can be determined by a learning procedure (such as back propagation) where the I 
connection strengths are iteratively adjusted to provide the best match of output 
values compared to the desired output values for a training set of input values. In 
computing molecular dynamics, the connection strengths can be determined by a - 

learning procedure. For example, an energy computation program (such as Insight 
11) may be first used to compute the energy of the molecule in different conforma- 
tional states and perturbations of the positions of the atoms from those states. The 
connection strengths can then be determined by using a training procedure to  find 
the connection strengths that provide the closest output energies for the structural 
information held fixed at the input nodes. It is not yet clear how large a training 
set is needed to adequately represent a protein. The representation formed in the 
hidden layer provides an approximate representation of the energy of the molecule 
as a function of its spatial structure. Once the connection strengths have been de- 
termined, the values at the input nodes that represent the structure of the 1~10lecule 
are no longer hcld ,I!, their fixpd input values, but are free to be determined by the 

tllc: n~f~work .  Tllese v;tllles will evolve as a function of the values of the other 
an ~ldi l ional  storhxtic component, applied to the network, in order to 

tlicrnld R~~ctuttiions. 
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In the Hopfield network all the nodes are connected to each other. The val- 

ues of the nodes (Si) are typically discrete (such as -1 and $1) and the con- 
nection strengths are symmetric (Jij = Jj i ) .  The stable conformational states 
of the molecule, and perhaps some additional states, are represented as memo- 
ries. The connection strengths are directly computed from these memories. These 
networks were formulated using concepts from thermodynamics and dynamical sys- 
tems [2,9,21,22,23]. Thus, their energies and dynamics most closely resemble those 
in physical systems such as molecules. Hence, we felt these networks were the most 
promising type to use to compute molecular dynamics. The properties of these 
networks and their application to computing molecular dynamics are described in 
detail below. 

2.4. Updating and Dynamics 

There are different methods to update the values of the nodes. In synchronous 
updating all the values of the nodes are changed simultaneously to their new values. 
In asynchronous updating the value of one node at a time is changed. The node 
chosen for updating can be determined randomly or by a preset order. The dynamics 
of some networks depends on the updating method used [2]. In computing molecular 
dynamics, the dynamics of the network must not depend sensitively on the details 
of the updating method used. We found that our simulations of small activation 
networks were most robust when the value of one randomly chosen node was updated 
at each time step. 

The new value of each node is a function of the values of the other nodes and 
their connection strengths. This function consists of two components. A deter- 
ministic component represents the deterministic forces in the molecule. A random 
component represents the stochastic forces due to thermal energy. The dynamics 
of the neural network determined by the updating method must correspond to the 
physical dynamics of the molecule. For example, it can be shown that the updating 
method (described below), based on Glauber dynamics, does correctly lead to a 
fraction of time spent in each of two states that is equal to exp(-AElkT) where 
A E  is the energy difference between the two states, k is the Boltzmann constant 
and T is the absolute temperature. For the Hopfield network the "energies" of the 
network correspond to the physical energies. Thus, the dynamics of these networks 

can be directly related to the dynamics of the molecule. For the activation and 
layered networks it is less clear how to relate the "energies" of the network to the 

I physical energies. 

3. Hopfield Network 

I 3.1. General Formulation 

In this network all the nodes are connected to  each other [21-231. In the original 
model the values of the nodes had two discrete values. This was later extended to 
continuous values. Here we will use binary nodes with the discrete values of Si = -I 
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or a 9; = 1-1. IIopficld ahowed that if the connection strengths were symmetric 

= J , ; )  the ~lctwork had two irnpor tnnl. properties. First, a physically meaningful 
eB,,gy hirlclion could be definctl. Second, the values of the nodes of the network 

in a way that cont,inunlfy lowers l l ~ e  energy function, until the values of the 
nodes reach the values corresponding to a "memory" encoded in the connection 
,trengths The memories correspond to local minima of the energy function. The 
network evolves, like a dynamical system dominated by friction rather than inertia, 
travelling downhill in an energy landscape until it reaches the memory at the energy 
minimum. The network is called associative or content addressable because the 
final values of the nodes share common characteristics with the initial values of the 

The original idea was that all of the energy minima would correspond to 
the memories encoded in the network. However, additional shallow minima arise 
from the interactions between the memories. In the original deterministic updating 
method the network sometimes reached and remained in these spurious memories. .- 

This can be avoided by using stochastic dynamics which makes it possible to go 
uphill in energy, with small probability, and thus escape from the shallow local 
minima of the spurious states. 

The energy E has the form: 

where N is the number of nodes in the system, Si, Sj = f 1 are the values of nodes 
i and j, and Jij is the connection strength between them. The state of the network 
at a given time is given by the values of all the nodes, which we denote by the 
N-dimensional vector 

S = ( s1 , .  . . ,SN)  

which has components S; = f 1. Equation (3.1) is the form of the energy for 
a system with N binary nodes where there are long range interactions that are 
bilinear in Si. 

Each memory corresponds to a set of values of the nodes. Thus, each memory 
can also be represented as a vector 

with N components, each of which ti = f 1. The values of the components of these 
memories are determined a priori. They depend on how the problem to be solved 
is encoded into the network. If there are p different memories, then the entire set 
of memories can be represented by the vectors 

The connection strengths Jij are determined from the memories, namely 

each other [21-231. In the original 
values. This was later extended to 
with the discrete values of Si = -1 
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A set of very useful quantities are called the overlaps, which are given by 

Geometrically m,, is the cosine between vectors E" and S in N-dimensional space, 
These overlaps provide a quantitative measure of the discrepancy between a giveo 
state S of the network and the state of the network that corresponds to  a given 
memory E l l  An overlap may have one of the (N + 1) values: -1, (_1 + 2/N), 
(-1 + 4/N),  . . . , (-1 + 2(N - l ) / N ) ,  1. 

The overlap m, describes how close the skate of the netw0rk.i~ toea given memory, 
If the state coincides with the memorjr; or its mirror image, then the overlap m, has 
its maximum absolute value of 1. On the other hand, if the state of the network is 
far from a given memory, then the overlap m, is close to 0. Two different memories 
are "orthogonal" when there is zero mutual overlap between them. Thus, memories 

are orthogonal if mp,, = 0. 

Using Eqs. (3.5) and (3.6), the energy in Eq. (3.1) can be rewritten as 

If the overlaps with all the memories are small, then the state S has high energy. If 
the.overlap with one or more memories is large, then the state S has low energy. 

The dynamics of the network is determined by the updating method. We will 
update one randomly chosen node i at each time step. If the value of the node 
changes, then the state S of the network will change. The updating method must 
ensure that the state S of the network will reach the local minima in the energy 
function Eq. (3.7) corresponding to one of the p memories in Eq. (3.4). I t  must also 
satisfy the thermodynamic requirement that the probability that the network is in 
state S is proportional to exp(-E(S)/T), where E(S)  is the energy in state S ,  and 
T is the temperature expressed in energy units. An updating method that meets 
these requirements is illustrated in Fig. 2 and described in detail in Appendix 1. In 
brief, this updating method consists of first computing the change in the energy of 
the network A E  that would result if the value of node i were changed from Si to 
-Si, which is given by 

This change in energy A E  determines the probability P ( A E )  that the value of the 
node should be changed. For the Glauber dynamics (described in Appendix 1) this 

Fi; 
val 
nel 

- J i j  

ab 
If 
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Fig. 2. Schematic representation of the Glauber updating method of the Hopfield network. The 
values of each node are either -1 or +1. At each time step a node i is chosen at  random. The 
new value of this node depends on the values SJ of the other nodes and their connection strengths 
J i J .  First, the quantity AE is determined. Then P ( A E )  is determined from Eq. (3.9). T is the 
absolute temperature in energy units. Then a random number R is chosen in the range 0 < R < 1 .  
If P ( A E )  < R, then the value of node i is multiplied by -1, otherwise it remains the same. 

probability is given by 

lbi l i t~ P (AE)  that the value of the At each step in the computation a node is chosen at random. Then A E  and P(AE) 

nits (described in Appendix 1) this are determined. A random number 0 < R < 1 is then chosen from a uniform 
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intermediate barriers to  reach a globally stable state. This property is called 
ultrametri~ity. 

The dynamics of the Hopfield network depends on two components: a deter- 
Il,inisl,ic Funcf,ion of Lhe values or t,hc nodes and their connection strengths, and a 
pl,oclLastic function. This is andogoons to the deterministic forces between the atoms 
,,a ~Jle  s l o c h ~ t i c  forcm dnr! t,o therrv~al energy in a molecule. The switching of the 
n,twork From one stale to anolher can be analyzed by a Markov processes where a 
+,ransj~ion probability matrix describes the probability per time step of a jump from 
,tate S to  S'. The details of this dynamic analysis are described in Appendix 1. 

The dynamics of the Hopfield network has different qualitative properties, called 
phases, depending on the number of notlcs, the number of stored memories, and 
the temperature. These phases are analogous to the phases of proteins such as the 
folded conformation, random coil, molten globule, or  infolded conformation [41]. 

The dynamics of the network depends on the number of nodes. When the 
number of nodes N is finite, the state of the network evolves so that after long times 
the probability that the network is in state S is proportional to exp(- E(S)/T) ,  
where E(S)  is the energy in state S .  This is described in detail in Appendix 1. 
AS the number of nodes N is increased, the time for the network to visit all the 
states also increases. This is not only because the number of states is larger, but also 
because the energy barriers between the memories increases with increasing N .  The 
height of the energy barriers between the memories is approximately proportionally 
to the number of nodes N .  This can be inferred from Eq. (3.7). When the state 
of the network is far from all the memories, all the overlaps m,, are approximately 
0, and the energy of the network has its maximal value approximately equal to 
0. When the state of the network is at one memory, the overlap of that memory 
m,, = 1, and if the other memories are orthogonal, their overlaps m,,, = 0, and the 
energy of the network is near its minimal value approximately equal to -N/2. Thus, 
the height of the energy barriers between the memories is approximately equal to  
-N/2. 

The dynamics of the network depends dramatically on the temperature. We 
consider the case where the network has a very large number of nodes N. At 
high temperatures, the network will have enough energy to cross over the energy 
barriers into all the states corresponding to all the memories. Thus, as the state 
of the network evolves in time, it will eventually pass through the states of all 
the memories. This behavior is called ergodic. However, at low temperatures, the 
network will not have enough energy to cross over the energy barriers into all the 
states during a long time, and hence its behavior is nonergodic. Thus, there is a 
critical temperature at which the dynamics of the network passes through a phase 
transition between ergodic and nonergodic dynamics. At even lower temperatures, 
there are additional phase transitions as the state of the network is increasingly 

into smaller fractions of all the possible states. At very low temperatures 
the state of the network may only be able to reach the nearest local minima among 
the spurious states that arise from the interactions of the memories. 



The  roba ability that the state of the network is within the domain of a given 
memory and has a given energy between E and E + A E  is proportional to the 
product of the Boltzmann factor exp(-E(S)/T) and the number of states of the F 

network within the domain of this memory and within this energy interval. This is 
analogous to  the fact that the probability to find a molecule in a given conformation 
with a given free energy depends both on the energy of that conformation and its 
entropy. The Boltzmann factor decreases with increasing energy. The number 
of states increases with increasing energy. This is because as the energy increases 
there are more nodes that have values that are not equal to the value of the memory 
and thus there is a larger number of such combinations that have the same energy 
(Appendix 3). At low temperature, the energy dependence of the Boltzmann factor 
dominates, and the probability that the network has a given energy decreases with 
increasing energy. At high temperature, the energy dependence of the Boltzmann 
factor is less strong, the factor due to the number of states dominates, and the 
probability increases with increasing energy. 

If the energy landscape has separate, deep, well defined minima then we can 
identify several different conformational states. This is analogous to proteins with 
well defined, stable structures and the distribution of times spent in each state is 
the sum of exponential terms. If the energy landscape has many, shallow min- 
ima, then we cannot identify unique structures. This is analogous to proteins with 
many conformational substates and the distribution of times spent in each state is 
nonexponential. 

3.3. Computing Molecular Dynamics Using a Hopfield Network 

Our goal is t o  formulate a network with the dynamics corresponding to the dynamics 
of a molecule switching between different conformational states. First, we must 
encode the spatial structure of the molecule into the network. Second, the energy 
landscape of the network must be constructed so that it resembles that of the 
molecule. We will do this by encoding the stable states of the molecule as the 
memories F''. 

First, we encode the spatial structure of the molecule in the values of the nodes of 
the network. Structurally similar conformations of the molecule should correspond 
to states of the network that are close to each other, and dissimilar conformations 
of the molecule should correspond to states of the network that are far from each 
other. Here we describe one such encoding that is particularly useful for a molecule 
consisting of a linear string of connected units, for example, a string of amino acid 
residues in a protein. The backbone of the molecule will be a curve in 3-dimensional 
space 

x ( s )  = ( x l ( s ) ,  xz(s ) ,  x3(s)). (3.14) 

The distance from the beginning of the chain is given by the variable s, where 
0 5 s < L,  and L is the length of the chain. The origin of the coordinate system is 
assumed to coincide with the center of mass of the molecule. 
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We now define a function F(sl)  on the interval 0 5 s' 5 3L, to represent the 
structure of the molecule: 

We distribute the nodes of our network uniformly along the interval [0,3L] and 
a value to each node of -1 or +1 depending on the sign of the function F(s l )  

at this point, namely 

Si = sign(F(sl)) . (3.16) 

The number of nodes of the neural network may be much smaller than the 
number of amino residues in the protein if the position of the backbone varies 
smoothly in space. If the dynamics and biologically important features depend 
more on the overall shape of the structure, rather than its fine details, than we 
can smooth F(s l )  by expanding it into a Fourier series and retain only the leading 
te rm.  This may significantly reduce the complexity of the description. However, 
some proteins may have important properties determined by the fine details of the 
local changes in conformation, and in these cases the higher order Fourier harmonics 
must be retained. 

Now we define the representation of the energy. We begin by determining the 
memories that represent the st able conformational states of the molecule. We ex- 
press the energy in terms of the overlaps between the current state S of the network, 
and these memories €11 That is, we consider that a particular state of the network 
consists of a combination of the memories. The physical interpretation of this rep- 
resentation is that a particular structure of the molecule consists of a combination 
of its stable conformational states. The values of overlaps describe the proximity 
of the current state to all the different memories, that is, the relative contribution 
of those stable conformational states. In this encoding the overlaps and thus the 
energy changes by only a small amount when the value of one node is updated. 
This important feature corresponds to the fact that over small time intervals, the 
structure of the protein changes by only a small amount. 

Some features of the expression for the energy in Eq. (3.7) now need to be 
considered. First, the basis functions t p ,  p = 1 . . . p are not necessarily orthogonal 
Or uncorrelated. Second, we will assign a specific weight factor al, to each memory 
to encode the relative stability of its corresponding conformational state. Third, 
the energy defined by Eq. (3.7) depends on the number of nodes N. This is not a 

feature since the number of nodes N is arbitrary and depends on the method 
to encode the spatial structure of the molecule. We remove the dependence 

On by dividing Eq. (3.7) by N. This also ensures that the energy remains finite 
ln the limit of large N. Thus, using Eqs. (3.1), (3.5) and (3.6)) our new expression 
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for the energy of a particular state S is defined as 
1 

l P N  1 v, 
E = - -  C C a,<r[,"siSj = -- C a,m; , 

2 
(3.17) a 

2N2 
,=l i , j=l  ,=I 

where a, are the weights of the memories, and m, are the overlaps between pth t 
C 

memory <, and the current state S. 
The values of weights a ,  are determined from the constraints that the energy 

t 
C 

in pth memory is equal to E, , which is the known value of the depth of the energy 
I 

minima corresponding to stable conformational state p.  This leads to  the set of 
r 

linear equations for the determination of a,: 

t 
I f 3  2 E, = -- a ~ ' m p p l  (3.18) I 2 

,'=I I 

i 

where m,,, is the mutual overlaps between memories <,, [ P I .  For orthogonal mem- t 

ories, where m,,~ = 6,,/ (Kronecker delta symbol), then : 

= -2E, . (3.19) 

Using the values of a ,  from Eq. (3.17) and the memories (P we can now deter- 
mine the values of the connection strengths: 

1 
J . .  - - C a <?[?. " - -2 P 1 3  

(3.20) 
,=I 

Up to now we have constructed the expression for the energy so that i t  includes 
only the information about the stable conformational states. However, we can 
expand the definition of the energy function so that it also includes information 
about metastable or unstable conformational states. We can do this by adding 
additional positive terms to the right hand side of Eq. (3.17) of the form 

1 
. . . +  I C ,&m:. (3.21) 

V 

We then use a procedure analogous to Eq. (3.18) to  determine the values of a,, 

location and depth of the energy minima. An advantage of this form is its simplicity. 
A disadvantage is that it is not complex enough to represent the shape of the energy 
minima. However, the shape of the energy minima also depend on other parameters 
of the model. Thus, we can include additional information about the energy minima 
by properly adjusting those parameters. For example, the effective width of the 
potential wells near the memories depends on the number of nodes of the network. 
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FFY 
,,dusting the number of nodes N, RS described in Appendix 3,  we adjust the 

w i d f , ~  Or thr potcnlinl wells LO generalc energy landscapes with narrow minima that 

arc separJed, or hrorrd minima that intersect. 
Tile tleur a1 network approach may be milch more computationally efficient than 

+,lie Rtnndard molecular dynamics computation. In the standard molecular dynamics 
comP~t,ation ihc l.ime sLep nwds 180 be kept small enough to keep the changes in 
i j l e  poi,en~.ials small during the t8ime atep. In the neural network approach only the 
changesin the generalized objects (Ihe overlaps) need to be kept small for each 
updaring atep. Thus, the physical time corresponding to a time step in the neural 
fie.work computation may be considerably longer than the physical time of the time 

in Ilw standard molecular dynamics computation. Moreover, the updating in 
si,andard molecular dynamics requirwi changing the position of all the atoms 

and, in some schemes, thermalization of their velocities due to  the interaction with 
the solvent. The additional Lherrnalization step is not necessary in the network 

because thermalization is included implicitly in the dynamics itself. The 
energy structure of the neural network is a simplified description of the energy 
structure of the molecule. The accuracy of the dynamics computed depends on the 
accuracy of this energy approximation. 

4. Hopfield Network Computation of Molecular Dynamics 
of C y clohexane 

We illustrate the general ideas above by formulating a Hopfield network to  compute 
the dynamics of the small, organic molecule cyclohexane. Applying the neural 

(3'20) network approach to this simple molecule allows us to trace all steps of the method 
and to elucidate the nature of problems that may arise. 

In for the energy so that it includes 

national states. However, we can 4.1. Encoding the Spatial Structure and Energy 
o that it also includes information Cyclohexane is a 6-membered carbon ring that has two stable conformational 
states. We can do this by adding structures, called the twist and the chair, which are illustrated in Fig. 3. There are 
of Eq. (3.17) of the form 

18) to  determine the values of a, 

we have used determines only the 
vantage of this form is its simplicity. 
to represent the shape of the energy Twist Chair 
l a  also depend on other parameters 

Fig. 3. The small carbon ring molecule cyclohexane can exist in different conformational states. formation about the energy minima 
The most stable forms are the twist and chair. The energy from thermal fluctuations causes the 

xample, the effective width of the molecule to spontaneously switch between these conformational states. 
le number of nodes of the network. 
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 addition^! unstahlc confarmat,iona! ~t.nrclures between the twists that are calkd 
boaks. Thermal f l ~ ~ c t u a t i o n ~  provide enouqll rrierg for the rnolcctr le to sponta- 
neous int,erconverf, between these s l r~~c lures .  Bec~usc of the many symmetries in 
t l ~ i a  molecule,  it^ energy function can be repr~acnted by a %dimension surface in a 
%dimensional space [38], wliidl is shown in Fig. 4. This energy surface has 2 global 
minima, 6 local minima and 6 saddle points. The 2 chair gtruct,irrm corrmpond to 
the deep, global minima at the poles. The 6 twist  stmct,utes corrrspond to the shal- 
low, local minima d i ~ t r i  brited uniformly along the equator. T h e  6 boat structnre~ 
cor~es~ond t o  the saddle points hetween l11c twists. The coordiilate axes oS Fig. 4 
are the coeficiente of tJhe huries harmonics for the out of plane displacements of ' 

the carbon atom shown in Fig. 5+ The 2. coordinate correspond to the coefficient 
of the cosfBss/L) harmonic, while the z and the y coordinates correspond to Ihc 
coefficients nf the cos(4vs/L) and sin(4irs J C )  I~atmwnics respectively. 

To encocle the spa~ial structure of Ihe rnaleculr! in Ihe network we mise the coor- 
dinate 0 5 s 5 Z of the dist,ance along the ring. Since the molecule is cyclic, the 
posil,iws 8 = 0 and 8 = I, coincide. Thus, bhe nodes of i,he network are distribrited 
along the coordinate! s. The structures of the chair, twist and haat can be described 

I 

Pig. 4. The energy function of E J E ~ O ~ C X R ~ ~  ran be presented by a two dimension swrme in a 

Chre+rhcrt~ional space. The surfwe ahown is a ~rhernal~ic representation of the eenprgiea calculated 
by Pi&ctt m r l  Streurn [3r3]. The deep minima at thr pol= ol the anmgy surFwe corrcllpnnd Ln the 
two chair codmrmlions. Thc uhnllow local minim lllnng thp equator correhpond to the uix twist 
conformations. Tht. . d d l ~  point. along tlie equator rorrcspond to the six boat cmformations. 
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Fig. 5.  The method used to encode the spatial structure of cyclohexane in the values of the nodes 
of the Hopfield network. The nodes of the network correspond to spatial positions around the 
carbon ring. If the atoms or the bonds connecting them are below the plane, the value of the 
corresponding node is -1. If the atoms or the bonds connecting them are above the plane, the 
value of the corresponding node is t1. The values of -1 and +1 are represented here as - and +. 

by the displacements of the carbon atoms in the direction perpendicular to  the 
plane of the ring [38] as shown in Fig. 5. Since these displacements take place in 
only one direction, we have the simplification that F ( s l )  depends only on the one 
coordinate XI. These small out of plane displacements of the chairs, twists and 
boats on the interval [0, L] are given by: 

for chairs 

s i n  (2 ) and f sin (2 ( & ) ) for twists (4.1) 

f cos (2 . F) and f cos (2 (F k i)) for boats 

Tllc value of the ith node Si = -1 if the displacement at that ~os i t ion  s is negative, 
resented by a two dimension surface in a a" = 4- 1 if the disnlacemenl is positive. 
ic representation of the energies calculated We will use t l ~ c  two types o f ~ t a b l e  structures (chair and twists) as the memo- 
les of the energy surface correspond to the 
~g the equator correspond to the six twist licv 'lo mcodod into t he  The connection strengths are determined from 

respond to the six boat conformations. mcmorica (,sing Eq. (3.5). Tbr! boat, structures do not correspond to minima 
"I 'la r~~nclioa, alld thus we will not use them m memories. (However, we 
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will see below that the existence of the boat structures arises from the interaction 
of the chair and twist memories.) It is only necessary to use the chair and twist 
memories with the "+" sign in Eq. (4.1), since those with the "-" sign appear au, 
tomatically, because the expression for energy is invariant under the trans for ma ti^^ 
S -+ -S. Therefore, if < is a memory, then its mirror image -I has the same energy. 
Thus, we use the memories corresponding to 1 chair and 3 twists. The additional 
mirror symmetric structures are automatically included in the energy structure of 
the network. 

Fig. 6 .  Memories used to represent the structure of cyclohexane in the Hopfield network. The 
values are given for the N = 24 nodes of the network for the one memory that corresponds to the 
chair conformation, and for the three memories that correspond to the twist conformations. 

The chair and twist memories are orthogonal and the chair and boat memories 
are orthogonal and thus their overlaps are equal to 0. However, the twists among 
themselves are not orthogonal, and the twists and boats are not orthogonal. These 
overlaps are given by: 

4.2.  Topology and Connection Strengths 

Due to the fact that twist memories are not mutually orthogonal, we have to  use 
the general procedure of Eq. (3.18) to calculate the weights a,, of the memories. 
Using Eqs. (4.2), (3.18) and (3.19), we find that 

18 
ffchair = -2Echair1 a t w i s t  = --E 11 twist ' (4.3) 

If the highest energy barrier of the transition state is defined to be zero, then 
Echair = -14.5 kcal/mol and Etwist = -6.5 kcal/mol [38]. 

Then, from Eqs. (3.18), (4.2) and (4.3) we conclude that 
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tructures arises from the interaction plate that we did not explicitly put into the network any information about the exis- 
necessary to use the chair and twist tence or energy of the boat structure. The boat structure arises from the interaction 
: those with the "-" sign appear au- of the chair and twist memories. 
is invariant under the transformation 
nirror image -[ has the same energy, q.3. Updating and Dynamics 

1 chair and 3 twists. The additional 
/ included in the energy structure of 

c~clohexane in the Hopfield network. The 
:or the one memory that corresponds to the 
orrespond to the twist conformations. 

nal and the chair and boat memories 
ual to 0. However, the twists among 
and boats are not orthogonal. These 

2 
wist-boat = 01 f - 3 (4.2) 

one randomly chosen node was updated at each time step of the computation. 
Metropolis or Glauber dynamics were used (see Fig. 2 and Appendix 1). 

The time in the numerical simulation is an integer number, denoting the total 
number of elapsed time steps. We have to determine the relationship between the 
time step of the neural network computation and the physical time in seconds. This 
is very hard to  do because this relationship depends on the updating method and 
on the parameters of the computation such as the number of nodes N ,  the number 
of memories p and the temperature T. This type of problem can sometimes be over- 
ome by an appropriate rescaling of the equations converting them to dimensionless 
form. We were not able to accomplish such a transformation at this time. 

Despite these difficulties we describe one method that we explored in order to 
relate the time steps in the neural network updating method to a physical time. 
The temporal behavior of the neural network may be approximated as a diffusion 
process in the space of the overlaps m,,. In Appendix 4 we show that for Glauber 
dynamics the diffusion coefficient D for this process is 

where r is the time step between two sequential updatings and N is the number of 
nodes. In Appendix 5 we show that the changes in the protein structure may also 
be considered a diffusion process driven by the input of energy from collisions of 
the molecules in the surrounding solution. In a normalized dimensionless space this 
diffusion coefficient D is given by 

where 1 is a characteristic length, u is the cross section of the interactions between 
the protein and the solvent molecules, n is the particle density of the solvent, and p 

mutually orthogonal, we have to  use is the mass of the solvent molecules. Equating D in Eqs. (4.5) and (4.6) we derive 
ate the weights a,, of the memories an estimate for r: 

18 
= - -E . (4.3) For cycloliexanc in solvent CS2 al, ihe absolute temperature 200 I<, 1 = 3 11 twist . 

In-'' m, t~ = 3 mZ, n = m7:j, p = 1.20 . 10-~"kg. (Note that 
In state is defined to be zero, then "le tem~lerarure in Eq. (1.7) is in energy units, and n e c d ~  to be divided by t h e  

al/mol [38]. [10Itrm~nn c o n ~ t m t  to b e  expressed in OK.) horn Eq. (4.6) we find illat D = 
, conclude that '" IO"-'. For o w  nctmork wit-11 N = 24 nodes we find from Eq. (1.7) that 

twist 
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4.4. Numerical Details and Computer Program 

The network had N = 24 nodes. At each time step one node was chosen at randoQ c( 

and its value updated. The value of the node was multiplied by -1, and theb n' 

the new values of the overlaps and the energy were computed. The probability 
that this new value should be accepted was determined by Metropolis or Glaubep ir 

dynamics (Appendix 1). A random number 0 < R < 1 was chosen from a uniforrtl P 
distribution. If p < R, then the new value of the node was retained, otherwise it S1 

reverted back to its original value. cl 
ir To analyze the time evolution of the network, we determined the structure that 1 

a best corresponds to a given state of the network by computing the absolute value of 
the overlaps with respect to the 1 chair and 3 twist memories. The memory with the 

tl 
e f 

largest absolute value of the overlap then defined the structural state of the network, 
0 

For example, if the overlap with one of the twists was the largest overlap, then the 
state was denoted as being that "twist" structure, although at many times it did 
not coincide exactly with the memory trace of that twist. Thus, the dwell time in 4 

the "twist" structure includes wandering between many slightly different twist-like F 
states. The same may be said about the chair "state". This definition of state is the 
same as the operational definition of conformational state experimentally measured u 
by NMR, X-ray diffraction, light absorption, fluorescence and other techniques, M 

where a measured conformational state includes the interconversions between very e 
similar conformational substates. v 

To perform the computation we used dimensionless variables of energy and tern- n 

perature. In cyclohexane, the lowest value of the energy, which corresponds to a 
chair structure, is 14.5 kcal/mol below the highest value of the energy, which corre- h 
sponds to  an unstable transition state [38]. The dimensionless energy function was t 
equal to the energy divided by 14.5 kcal/mol. Thus, the dimensionless energy had a 

a maximum value of 0 and a minimum value of -1. The dimensionless temperature P 
was equal to the absolute temperature in OK divided by [(14.5 kcal/mol)/R], where 
R is the gas constant. Thus, the value of the dimensionless temperature T = I, ' 
corresponds to a temperature of 7300 OK. n 

S 
The computer program was written in standard ANSI C-language. This allowed 

us to  use the sophisticated user-friendly interface of Think C 5.0 on a Macintosh 
IIfx t o  debug the program, before transporting it to faster computers like the Silicon t 

I Graphics IRIS workstation and Convex supercomputer. The computational results 
v 

were stored in ASCII files, transferred to the Macintosh IIfx through FTP  (File 
I 
r 

Transfer Protocol), and analyzed and graphed using Igor Software (WaveMetrics 
Inc .) . 

c 
Typical computational times on the IRIS to complete 10000 switches between 

the twist and chair conformations ranged from minutes at high temperatures, t o  
I 

hours at low temperatures. The computational time depended most strongly on 
temperature and less strongly on the other parameters, such as the number of nodes, , 
The computational time increased exponentially with decreasing temperature. we 
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co 
nsiderably by eliminating many of the iterations during which the state of the 

network does not change. 
Some aspects of the coding were important in computational efficiency. We used 

in teger or long integer representations instead of float or double precision where 
ossible. We also precalculated tables of all possible values for certain variables, 

:uch as the overlaps. This allowed us to avoid recalculations at every time step. The 
change of an overlap during one time step is equivalent to a shift by one position 
in the array of possible overlap values. The dwell time distributions of the twist 
and chair times were computed from combined histograms of different bin width so 
that bins are narrow for short times and wide for long times. The method is very 
efficient and accurate at providing the dwell time distribution over the largest range 
of dwell times (Liebovitch et  al., in preparation). 

~ i ~ ~ t  we describe some features of the energy function computed by the neural 
network. The structure and energies of the chair and twist conformations were 
used in formulating the network. The structure and energy of the boat conformation 
was then computed by the network. We found that the network predicted that the 
energy of the boat conformation is equal to -4.8 kcal/mol, which is similar to the 
value -6.0 kcal/mol given by Pickett and Strauss [38]. We emphasize that we did 
not explicitly put into the network any information about the boat conformation. 
Nonetheless, the network contains the structure of the boat conformation and it 
has approximately the correct energy value. The boat conformation arises out of 
the interactions of the input chair and twist memories. A new property, especially 
a global property, that arises from such local interactions is called an emergent 
property. The boat conformation is an emergent property of the network. In some 
sense, the few memories chosen to formulate the network have captured the natural 
form of the molecule. Thus, the network reproduces additional properties of the 
molecule that may appear distinct to us but are actually emergent properties of the 
stable conformational states of the molecule. 

The energy of khc network evolves in lime. We compu t,ed the number of times 
l1lp nctlwork !I= each energy value. Tlbe fnnclional form of this disbribution changes 
with temperat-ilre. This distribution provides a u~eful  test, of our conlputer program. 
As demibcd in Appendix 2, Lhis distribution can he dcterrnined analytically for a 

twOrk wihll one memory. As shown in Fig. 7, the disirihution cornpatled numeri- 
'ly fr~nl the network simulation closely matches the ansly tical relationship. This 
r 'm~ond~nse  increases our confidence in the computer code. 

In "Ili* di~t~rihulion we can 01,sarve the qualitative change of the behavior when 
llllro~gh a certain crii.icd temperature. This is n manifertalion of n phase 

jrahikion in a finite system. The quantitative de~rripl~ion of t h i s  phenomena is given 
'I' Appon( i i~  2. The time epcnt in a eonformntio~~al state depends on botll t l ~ e  depth 
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Fir. 7. At a given temperature, the distribution of the number of times that a Hopfield network 
one memory has each value of energy is plotted versus energy. The network used had N = 24 

,- 'i'hr. r..n,-+.l;nn*l fn- nf this rlirfr;hution change with temperature. At low temperatures 
~rrlinke tprnnerrtaxrps i t  hka n local maximum, At high 

squares. The values computed from Eq. (A1.5) are shown as hnes. 
timt 



Neural Neiworks lo Compute Mo/ecu/ar Dynamics 215 

of 
,llc energy well and  I,be density of sl,al,es within the well. At low temperatures 

the 
,,,ol~cule spends mnsl of its t,imr! in the conformational state corresponding to 

,,,,: dcepeSk pote~~t ia l  well. nowever, a t  a~ifficiently high temperatures, the molecule 
' entls n~os t  of ils time in !,he conformational state with the largest density of 
SP 
I,l,hF~el,es. Thus, at higher lemperalures, the structures corresponding t o  shallow, 

T=0.05 1 wells are more importan!. t . b ~ n  strllctures corresponding to narrow, deep wells. 

, wl1en the depth of potentid wella are kept constant, at  a given number of 
I1lemories, the relative number of states belonging to an energy minima decreases ' 

increasing N (Appendix 3). This makes it less probable for a system to be 
in any one valley. Thus, the critical temperature needed to ensure that 

5 0.0 the system visits all valleys decreases. The critical temperature scales in inverse 
Energy roportion to the number of nodes N. We confirmed this expectation by simulations 

networks with different numbers of nodes N .  
The time evolution of the energy, conformational state, and overlaps of the 

,yclohexane network simulations are shown in Fig. 8. The conformational state is 
defined according to which memory has a maximum overlap. Note that this does 
not distinguish between the three distinct twist conformations, so that there are 
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transitions, where the molecule jumps from one twist to another twist without first str: 
through the chair conformation. Such a transition can be seen near t = 40. ec(, 

At the low temperature used to  compute Fig. 8, the molecule spends most of its 
by 

time in the chair configuration and only small part of it in the higher energy twist trn 
and the highest energy transition states. , f01l 

The distribution of dwell times spent in the twist and chair conformations are I illustrated in Fig. 9 for 21g°K (top) and 292OK (bottom). These temperatures I,,, 
correspond to T = 0.03 and T=0.04 in dimensionless temperature units. The 
dwell time distribution of the twist conformation is approximately a power law or 
stretched ex~onential. The dwell time distribution of the chair has two regions: . , 
steep decay at short times (that is possibly a power law ) and a single exponential 01. 
at longer times. The dwell time distributions of cyclohexane have not yet been tht 
measured over a large enough range of time scales to  compare to these results. The qu 
qualitative dependence of dynamics on temperature is as expected. The average 011 

time spent in the more stable chair increases significantly at lower temperatures. It, ho 
is not yet clear how to determine the physical time that corresponds to each time I ~ Q  

LIll 

ch 

I U  

or 
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I cl 
Fig. 9. Distribution of the dwell times spent in the twist and chair conformations computed sl 
from the Hopfield network representation of cyclohexane. These histograms are based on the c, 
computation of the durations of 10000 twist and chair conformations. The distributions are 
shown for temperatures T = 0.03 (219 OK) at the top, and T = 0.04 (292 OK) at the bottom. P 
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step of the neural network computation. Using the method described above that 
,pa tes  the thermal component of the neural network with the energy flux imparted 

collisions of solvent molecules, we find that the time scale for the chair to twist 
predicted by the neural network is approximately lo4 faster than that 

found from the NMR measurements [3]. It is not clear whether this means the 
neural network computation is in serious error or merely that we do not yet know 
how to scale the time steps appropriately to  physical time. 

time in chair (At)  

lo1 lo2 lo3 lo4 

time in chair (At)  

e twist and chair conformations computed 
xane. These histograms are based on the 
hair conformations. The distributions are 
and T = 0.04 (292 OK) at the bottom. 

5 .  Discussion 

Our motivation for studying protein dynamics is not the "protein folding problem," 
that is, to predict the spatial structure and folding pathways from the primary se- 
quence of amino acid residues. We are interested in how a protein switches from 
one &able conformational state to another. In particular, we want to understand 
how the motions inside a cell membrane ion channel protein causes it to switch 
between conformational states that are open or closed to  the passage of ions. Using 
the patch clamp technique we can measure the sequence of times that an individual 
channel molecule spends in each state [31,32]. We want to understand the infor- 
mation about protein structure and dynamics that is conveyed to us by this data. 
This was the motivation for computing the dwell time distributions of cyclohexane. 
Interestingly, the forms of the dwell time distributions shown in Fig. 9 are the forms 
most commonly seen in the patch clamp data. These forms include a power law or 
a stretched exponential form over all time scales, or power law behavior at short 
times and single exponential behavior at long times [14,28,29,31,32,45]. 

Neural networks may prove useful in thinking about protein dynamics. The neu- 
ral network representation suggests that we may have placed too much emphasis 
on the structure of the most stable conformational states. Forces between nearby 
atoms are stronger than forces between distant atoms. Hence, highly ordered struc- 
tures form in small regions of the network. Each of these small regions may have 
different and conflicting local structures. Thus, while many nodes may have values 
corresponding to one stable conformational state, there will be other nodes that 
have values corresponding to other stable conformational states. In principle, we 
could enumerate all possible combinations of the values of all the nodes, and call 
them "states". However, this it not a useful way to think about what is happening. 
A more useful interpretation is to  think of a protein as being approximately in one 
"ate (corresponding to one memory), although some of its parts may be in other 
conflicting states (corresponding to other memories). 

An ion channel is open when most of the nodes of the corresponding network 
have values corresponding to the open conformational state. Thermal fluctuations 
Change some nodes into the closed state. Local interactions between nodes then form 
small regions that are locally in t,he closed configuration. These small closed regions 

with their surrounding locally open regions. The structure of the channel 
is always bulging ant, into the wrong states in local regions. As time goes 
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by, more and more local regions will change into the closed conformational slat,, ab 
The nonlinear local interactions then latches up the channel protein structure ink, 
its new conformational state. 

Pr 
th 

Neural networks may also prove useful in computing c rote in dynamics. Pro. 
tein motions are now caIcula!,cd by evnli~aling the force on each atom, updatillg 6 .  
its position, and then repeating tohis procedure many times [25,33]. This method 
is inefficient because the rlabur~ of the pmt#ein is not intrinsically contained in the 

NI 
m 

method. Thc metho(l is constm~tly fighting the protein, keeping the steps small 
so that the forces do not change much over the distances that the atoms move in 
each time step. However, the properties of a neural network (such as its energy I st 

structure) is similar to that of a protein. Thus, the neural network forms a natural 7. 
encoding of the protein. Encoding a few essential features of the protein as the 
memories of neural network may thus reproduce many additional, emergent prop- M 

erties of the protein. We showed above that the memories of the twist and chair b ! 
conformational states of cyclohexane were sufficient to generate the existence of the B 

boat conformation and even approximately reproduce the value of its energy. 
The evolution of the neural network is limited by the roughness of the energy A 

landscape. Motions within local regions on this landscape can be accurately ac- N 

complished by the neural network in one time step, while the F = ma molecular 
dynamics might take a very large number of small steps to integrate the positions 

H 

of the atoms over physical space. The neural network encodes only some of the I 
I information about the protein. This coarseness means that the accuracy of the 

computed dynamics is limited. It also means that if the neural network contains I 

the essential features of the protein, then the dynamics of these features can be 
computed very efficiently. Tbe cyclohexane calculation was an important first step 
that was useful in illustrating and resolving some of the issues involved in this new 
method. However, in order to fully test the efficiency of this new method for large 
molecules, it will be necessary to use it to compute more complex systems, such as 
the gating of ionic channels or protein folding, and compare those results to that 
obtained from other methods. 

The purpose of this paper is to present a beginning to formulating neural net- 
works with the properties of given molecules so that the dynamics of the molecule 
can be computed from the dynamics of the corresponding neural network. We briefly 

' 

described methods of encoding the spatial structure of the molecule into the net- 
work, appropriate types of neural networks and methods of updating. We described 
in detail the properties of the Hopfield network and its use to compute the twist to I 
chair transitions of cyclohexane. We have not presented a finished method. That 
would be too ambitious an undertaking for one paper. Rather, we have presented a 
review of the possibilities and illustrated them with a specific example in order to 
clarify the questions that need to be answered and to explicitly state the problems 
that need to be solved. The best method of encoding the spatial structure, the best 
type of neural network to  use and the best updating scheme to use remain to be 
determined. Perhaps the most difficult questions are: (1) How much information 
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into the closed conformational state, ,bout the molecule needs to be encoded and how much will arise as an emergent 

UP the channel protein structure inlo property of the network, and (2) What  is the relationship between the time step of 

the neural network computation and physical time in seconds? 

1 corn13uting protein dynamics. pts 
Ig the force on each atom, updnl,ing 6.  C O ~ C ~ U S ~ O ~ S  

re mnny ilirnpa [25,311- Tlli~ method ~~~~~l networks are a new type of model which are useful in studying systems with 
i~ noh intrinsically ronlained in kl la  many interacting pieces. proteins have many of the properties of neural networks. 

"lit pratein* keeping sf .e~r  small Thus, neural networks may serve as a useful paradigm in thinking about molecular 
he distance that al~oms move in structure and may lead to an efficient method of computing molecular dynamics. 
* neural nebwork (such as it,@ energy 
'1 nelfral network fol'm~ R natural 7. Acknowledgements 
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I APPENDIX 1 ~ I Dynamics of the Evolution of Probabilistic Networks 
I 

~lysis of a voltage-dependent potassium 
11 neurons. Biophys. J. 52  (1987) 

I 

The evolution of a probabilistic network can be described by its time dependent 
probability density function p(S), where S is the state of the network at time t .  
The changing value of this function in time is determined by an equation, called 
the master equation (see, for example, [46]). For the discrete time steps 1,. . . , n, 
n + 1,. . . where pn(S) is the probability density function at the nth time step, the 
master equation has the form 

.s of Proteins and Nucleic Acids (Cam- / where W(SISf) is the probability of a jump from the state Sf to S during one time 

dlel Distributed Processing 1-2 (MIT 

tions in Parallel Distributed Processing 

Step. 
If a system is finite and not degenerate in some sense [16], the probability den- 

sity function at long times approaches a unique final equilibrium distribution. In 
physical systems this is distribution is the Gibbs-Boltzmann distribution, which has 

I., Teller A. and Teller E., Equation the form 
achines. J. Chem. Phys. 2 1  (1953) E(S) p = const .exp (- , (A1.2) 
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where T  is temperature measured in energy units. In order to reach this distribu. , and 
tion, and in order to  meet some other physical requirements, the Markov transition 
matrix W should satisfy the condition of detailed balance condition with the final 
distribution (A1.2), [46] namely: 

I 

Substituting (A1.2) into (A1.3) we obtain 
1 the 
1 tha 

in 
where AE is the change of energy for the process S + S1. t a ~  

In the stochastic dynamics of one particular system the energy is not necessarily eq 
a decreasing function of time because of thermal fluctuations. We now use the prob- 
ability distribution p(S) to  describe the evolution of an ensemble of these systems, 
rather than of one particular system. To characterize the properties of an ensemble 
of systems, we use the free energy F which is given by the relation: 

F = ( E  - T S )  = p(S)[E(S) + T l n (~ (S ) ) ]  
S 

Here ( S )  is the dimensionless entropy of a distribution. 
The relations (Al . l )  and (A1.4) imply that the free energy is a nonincreasing A 

function of time. I: 
An infinite number of possible updating methods exist that satisfy (A1.4). The 

choice between them is dictated by practical considerations. The most common B 
i: updating method for computer simulations is asynchronous updating where only 

one node at each time step is considered for updating. This updating method 
I avoids problems, such as closed cycles of length 2, that are common in synchronous 

updating methods where all the nodes are updated at the same time [2,9]. 
I In the asynchronous updating method, where the value of only one node i is 

considered for updating at each time step, the new state of the network S1 can 
differ from its previous state only in the value of that one node, and thus all the I 

I 
other W(S1(S) are equal to zero. The node i to be updated can be chosen in a fixed 
sequence, randomly, or randomly from the nodes which have not been updated in 
a current updating cycle of the length N. For our purpose the random updating 
seems to be the most appropriate because it  resembles the physical events where 
random collisions of the solvent molecules into the protein add energy at a local 
point that changes the conformation of the protein. 

use 
Differ 
d are 

:nt functional forms of W(SIIS) are possible. The two 
,he Metropolis [36] form: 

( for A E  < 0 

W(S1lS) = 1 exp ( - F), for A E  > o 

most 
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the free energy is a nonincreasing 

,hods exist that satisfy (A1.4). The 
:onsiderations. The most common 
uynchronous updating where only 
updating. This updating method 
2, that are common in synchronous 
ted at the same time [2,9]. 
re the value of only one node i is 
new state of the network S' can 

of that one node, and thus all the 
le updated can be chosen in a fixed 
s which have not been updated in 
our purpose the random updating 
sembles the physical events where 
the protein add energy at a local 
:in. 
xsible. The two most commonly 

for AE < 0 

( ~ 1 . 6 )  
for AE > 0 

W(S1lS) = 2 (1 - tanh (g)) 
More precisely, (A1.7) gives the element of the W matrix multiplied by N ,  since 

their is probability (1/N) to pick an arbitrary node for updating. It can be shown 
that both (A1.6) and (A1.7) satisfy the requirement (A1.4). 

The Metropolis form (A1.6) is a fast algorithm that is favored in many in 
' simulations. On the other hand, the Glauber form (A1.7) is favored 

in theoretical analysis because of the useful property of the tanh function that 
t a n h ( S ~ )  = S . tanh(x) for S = 0, f 1. Note also, that the Glauber form in thermal 
equilibrium (A1.2) is equivalent to  assigning the value 1 to a node with a probability 

where A E  = E(Sj = 1) - E(Si = -1). This probability is independent of the 
previous value of the node. The updating method (A1.8) is the equilibrium version 
of Glauber dynamics. It is used in the Boltzmann machine network [1,34]. 

I A P P E N D I X  2 

Dependence of t h e  Fo rm of t h e  Energy  Dis t r ibu t ion  on Tempera tu re  

We consider here a neural network with one memory. A more general description 
is given in Refs. [2,9]. 

If the state S and the memory < have N +  nodes with the same values and N-  
nodes with opposite values, then from (3.6): 

N +  N N 
N+ + N-  = N,  m = 2- - 1, N+ = - ( I +  m), N-  = - ( I -  m) (A2.1) 

N 2 2 

1 The energy, calculated from the overlap m of the one memory is 

The probability for a system to have energy E is proportional to the product 
of 2 components: (1) the Boltzmann probability to occupy a state with this energy 
and (2) the number of possible realizations of the state with this energy. According 
to (A2.1, A2.2) the energy depends only on m,  which can be expressed using N'. 
The number of possible realizations with the given energy E may be defined as the 
number of states with given value N + ,  that is 
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where c;+ is the number of combinations of N things taken Nt at a time. For ! I 
deridc 

the probability for the state of the network to  have the energy E, we find that simpi 

N +  
I willu 

p ( ~ ( r n ( N + ) ) )  = const. CN exp (- g )  . (A2 .4)  1 yieldj 
I 

Figure 7 shows the excellent agreement between the analytical form (A2.4) and the trans 

numerical results from the computer simulation of the network. 
FI 

APPENDIX 3 

Geometrical Properties of an N-dimensional Cube 

I patte 

I 

The values of the components of the state S of the network can be represented by 
the coordinates of the vertices of an N-dimensional cube [ - I ,  1IN.  Each vertex 
corresponds to  one state, and the total number of states equals 2N.  Each memory 
is responsible for one term in the energy (A2.2) and for a corresponding potential 
well on the energy surface. We define a state to be in the domain of a memory if 
the absolute value of its overlap m,, with this pth memory is greater than a certain 
value mo: 

1% I > mo (A3.1) 
The number of states of the network, where there are N+ matches between the 

the values of the nodes and the values of their corresponding memory (Si = ti) is 
given by (A2.3). Therefore, using (A2.1) we find that the probability p(mo) that 
the condition (A3.1) is satisfied is given by 

Thus, (A3.2) shows that p(m0) depends on N .  In the limit of large N ,  the 
probability p(mo) decreases approximately exponentially with increasing N. 

Note that while the relative number of states in the vicinity (Im,,l > mo)  of 
the pth memory trace decreases with increasing N ,  the absolute number of states 
in the domain of this memory increases. The angle cp between two adjacent states 
decreases according to the relationship: 

I Note- 

1 
m. l 
give 

Her I 
I the ( 

I nodc 

I The 

I 
The number of nodes N also determines the variety of possible directions to 

leave a potential valley. In terms of proteins, that may mean that the number of ' 

states near a stable conformational state may therefore depend on the size of a 1 

protein and its number of important degrees of freedom. I 
APPENDIX 4 

Diffusion Coefficient of the Probability Density Function in the 
Space of the Overlaps 

We now show, that for large numbers of nodes N, the evolution of the state of the 
network can be considered as a diffusion process in the space of overlaps. We will 
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derive the expression for the diffusion coefficient for the Glauber dynamics case. For 
simplicity we will analyze the case where the network has only one memory. We 
will use a memory of the form [ = (1, 1, . . . , I ) .  A single memory of another form, 
yields exactly the same result, because we can rotate the N-dimensional space to 
transform that second memory into the form of the first memory. A more detailed 
description for several memories is given in Ref. [9]. 

First we note, that with number of nodes N, the overlap m with a single memory 
pattern can have only a discrete number of ( N  + 1) values given by 

Note, that changing the value of one node changes the value of m by +E.  

We now consider the probability p, that the overlap of the network has the value 
m. The Markov equation for the evolution of this probability density function is 
given by 

p;tl - n 
- (P P+),-C + (pnpo)m + (pnp-),+, . (A4.2) 

Here p+, po and p- are respectively the probabilities to increase, keep and decrease 
the overlap by E per one time step, and n stands for the total number of elapsed 
time steps. 

We now evaluate p+,  po and p- as functions of the overlap m. If one particular 
node Si is chosen, then in Glauber dynamics (A1.7, 3.12) the probability to keep 
the value of the node unchanged is given by 

A 2 (1-tanh (g) )  = (1-tanh (g)) = (1-si tanh (E)) . (A4.3) 

The increase in m takes place when we change the value of the node, which was 
in a state Si = -1. The probability that this is the node that we will choose for 
updating is equal to N-IN.  Thus, using (A2.1) we obtain: 

Substituting this into (A4.2), we find that 

On the left hand side we have the time difference of a value, and on the right hand 
side there are two "space" differences. We now make a Taylor expansion of both 
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sides. The left hand side we expand in terms of the powers of the time step T .  The 
right hand side we expand in terms of the powers of the "space" step E: 

Assuming that E is small and neglecting high order terms: 

This expression has the form of the Fokker-Planck equation [46]. Note that the 
coefficient under the derivative in the second term at the right hand side is always i 

$ 
positive and is greater than (1 - Iml) for m in [-I, 11. Therefore, the diffusion 
coefficient is always positive and of order of magnitude I thf 

or, recalling (A4.1): 

APPENDIX 5 

Diffusion Coefficient of the Evolution of the Physical Structure 

We can relate the time step in the neural network simulation to the physical time 
by equating the diffusion coefficient of the changing state of the neural network in 
the previous section with the diffusion coefficient based a physical description of 
the thermal fluctuations in the molecule. Thus, in this section we seek an estimate 
of the diffusion coefficient of the changes in structure due to  the thermal energy 
supplied to the molecule by collisions with the solvent molecules. For simplicity, 
and to give us an insight into the method itself, we use the highly simplified case of 
one variable. 

The equation of motion for one degree of freedom of a thermally fluctuating 
molecule can be written in the Langevin form [46]: 

~ h j  
It i18 

: con 

Here M is the effective mass of a given degree of freedom, y is the attenuation 
coefficient, U is the potential function, z is the space coordinate, fL(t) is the random 
Langevin force. The dots above the variable x denote time derivatives. In o 

When the surrounding media which causes thermal fluctuations is dense enough, I rant 
then the first inertial term in (A5.1) is much smaller than the second dissipative I bet] 

I 
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term. Thus, we neglect the first inertial term, and consider the regime dominated 
by spatial diffusion [la]. We also replace the space variable x by the dimensionless 
variable m: x 

m = ~ l  

(A5.2) 

where 1 is a length characterizing the distance between different stable conforma- 
tions. The variable m is similar to the dimensionless overlap in the network model. 

The Langevin equation (A5.1) can now be rewritten as: 

If fL(t) is &correlated stochastic noise with intensity F ,  

then the expression (A5.3) is equivalent to the Fokker-Planck equation [46] for the 
probability density function ~ ( m ) :  

The stationary solution of this equation is 

p = const . exp - - ( 3) ' 

which should be equal to the Boltzmaun distribution p = const . exp(-U(x)/T). 
Equating these two expressions we obtain 

This relation between y and F shows how the friction arises from thermal collisions. 
I t  is connected with the Einstein relation for diffusion and mobility, and it  is also a 
consequence of fluctuation-dissipative theorem. Substituting (A5.7) into (A5.5), 

: t 1 (A5.1) From this diffusion equation we define the diffusion coefficient D ,  

f freedom, y is the attenuation 2T2 
D = -  (A5.9) 

coordinate, fL(t) is the random F12 ' 

)te time derivatives. In order to  estimate the value of D we must know the value F of the intensity of the 
nal fluctuations is dense enough, random force. The Langevin force (A5.4) is the result of frequent random collisions 
ller than the second dissipative between our molecule and the molecules of the solvent. The average absolute value 



228 Liebovitch, Arnold ,  Selector,  . . . 
of the force experienced by the fluctuating molecule due to one collision is equal to 
the change of momentum of a molecule of the solvent: 

where p is the mass of the solvent molecule, v, is the component of thermal velocity 
for a p-molecule in the direction of collision and I9 is the average duration of each 
collisions. The average value (a) = 0. The total random force is the sum of all the . 
forces from the random collisions. For an impulse of this kind [40] the correlation 
function is given by 

~ ( t )  = n l ( a2 )9 .  exp (- 7 )  , (A5.11) 

where nl is the frequency of collisions. For short correlation times 29, we approximate 
the exponential function by a 6 function o f t  with the same integral. The coefficient 
F of this &function is given by 

2 2 F = 8nlp V, . (A5.12) 

Using the equality (see, for example [27]) pv:/2 = T/2, n l  = vna x ( 3 ~ / p ) ~ / ~ n a ,  
where v is the thermal velocity, n is particle density of the solvent, and a is cross 
section of interaction between our molecule and molecules of the solvent, T is the 
temperature measured in energy units, we obtain from (A5.9), (A5.12): 

~ 1 / 2  
D %  (A5.13) 

4&12anp1/2 


