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from W Cl6 and H2: 

Abstract. The origin of oscillations observed in laser di- 
rect writing of W lines on quartz substrates is studied on 
the basis of a one-dimensional model. The dependence of 
oscillations on laser power, scanning velocity, etc., is dis- 
cussed. The predictions are compared with experimental 
data. The present approach can be applied also to other 
systems, where such oscillations have a different origin. 

PACS: 42.62; 44.30; 61.80 

Laser direct writing is a one-step technique for surface 
micropatterning. Different materials and precursor mol- 
ecules were studied [1, 2]. Under certain conditions, oscil- 
lations in the height and width of lines are observed 
[1, 3-8]. The origin of these oscillations differs from sys- 
tem to system and sometimes remains speculative. Some 
of these oscillations were explained by latent heat effects 
[5], changes in the absorptivity with chemical composi- 
tion [6, 9], temperature differences within deposits [10], 
etc. Different types of oscillations have been studied theor- 
etically in [%12]. Recently, we have developed a one- 
dimensional approach for laser direct writing [13] which 
also permits a description of oscillations [10]. In the 
present article, we extend these investigations with special 
emphasis on time-dependent effects observed with the 
deposition of W from WC16 [7, 14]. Nevertheless, the 
model can be applied to other systems as well. The aim of 
the article is to provide a simple mathematical formalism 
which permits to understand qualitative features of the 
process. 

1 Mathematical framework 

Henceforth, we will employ the one-dimensional model 
for laser direct writing discussed in [10, 13]. When a metal 
is deposited onto a thermally insulating substrate where 
the ratio of thermal conductivities K* = KD/Ks >> 1, the 
heat is transported mainly along the deposited stripe 

(index D) and gradually dissipates into the substrate 
(index S). This allows to approximate the three-dimen- 
sional heat conduction problem by a one-dimensional 
equation for the temperature distribution along the stripe 
T(x, O. In order to determine self-consistently the para- 
meters of the stripe, such as its width 2r, height h(x, t), and 
distance a between the center of the laser beam and the 
front edge of the stripe, the heat equation must be solved 
together with the equation of growth. These equations can 
be written as [13]: 

K D aT 8 (F 8T~ 
DD F ~ = KD ~x \ ~x / - ~IKs(T - T~ + AP(x)' (1) 

8h(x, t) �9 t) 
- - ,  a ~  - w (x) + Vs 8x (2) 

where Vs is the scanning velocity, DD the heat diffusivity, 
F oc rh the cross section of lines, To the temperature of the 
surrounding, P(x) the laser power per unit length of the 
line, and A the absorptivity; 11 ,z 2 characterizes heat 
losses into the substrate. Here, it has been assumed that 
the deposit is flat (h/r ~ 1) and that the scanning term in 
(1) can be ignored. The growth rate can be described by 
the Arrhenius law 

W(x) = W IT(x)] = k0 exp [ -  Ta/T(x)], (3) 

where Ta is the activation temperature and ko the preex- 
ponential factor. To achieve further insight, we make 
additional simplifications: Firstly, we approximate partial 
differential equations by ordinary differential equations. 
We describe the hot area near the laser beam as a "chem- 
ical reactor" which is open with respect to mass and 
energy transfer. The chemical transformations result in 
the "production" of h, while the scanning term 
Vs ~h(x, t))?x removes the material from the reactor. En- 
ergy exchange is provided by the absorption of laser light 
and heat conduction. The reactor is characterized by the 
temperature of the zone near the center of the laser beam 
To and the (slowly varying) height h immediately behind 
the beam. For flat structures the changes in r and a are fast 
and we can assume r = r(h, T~). For each given value of 
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h and laser power P, there exists a quasi-equilibrium value 
To = To,eq(h). In other words, r~,eq(h) is the temperature 
established by heat conduction in the artificially prepared 
stripe with height h. The function T~ = Te,eq(h), or rather 
the inverse function h = heq(To), can be derived from (1) 
under different physical assumptions on the temperature 
at the edge of the line. We assume a temperature threshold 
for deposition Tth [14] and take into account the finite 
size of the laser focus Wo. This leads to the following 
equations [10]: 

a 12 
- (4) heq(To) K* a 

with 

h f ATo'~ PA(T~) 
#(To) = arccos ~ A ~ h ) '  t(r~) - ~ / g s a Z t h  e -g(Te), 

a(rc), = I# + )(Wo, (5) 

where AT = T - To, 4, )6 and a are geometrical factors 
close to unity; 1 characterizes the decrease in laser-induced 
temperature along the x-direction. 

After some perturbation, the temperature Tc of 
a stripe of height h shall return to the equilibrium value 
according to 

dTo -t(Tc,h)  [To,~q(h) T J  =kv(Tr h) [heq(To) hi. d~ ='CT -- - 

(6) 
The first square bracket determines the relation between 
the quasi-equilibrium temperature and h. The second 
expression is mathematically equivalent, but more 
convenient, since we can directly employ the dependence 
heq(Tc) given by (4, 5). The relaxation time rx can be 
estimated as I2/Ds . For the typical parameter values em- 
ployed during the deposition of W in [7], we obtain from 
(4, 5) 1 2 , , ~ h r K * , ~ 3 x l O - g c m ,  and z T ~ 3 x l 0 - Z s  
(Ds(SiO2) ~ 10-2cm2/s). When the expression in the 
square brackets is equal to zero, T~ remains constant, 
unless h changes due to deposition. With 8h(x, t)/ 
8Xlx:O ~ - h/7 a with 7 ~ 1, we can approximate (2) by 

dh h 
dt  = W(Tc) - Vs ya(ro)" (7) 

The typical time constant for the changes in h is 
Zh "~ a/vs ~ 10 s. It is of the same order of magnitude as 
the observed oscillations. With overall equilibrium with 
respect to both heat conduction and growth, 
dTo/dt = dh/dt = 0. This equilibrium situation and the 
influence of different parameters on h, r, and T~ were 
studied in [10, 13]. 

The second simplification concerns the behavior of To. 
Because "fiT ~ "Ch in each moment, Tr can be calculated 
from the quasi-equilibrium temperature distribution 
Tr = To,~q(h). Therefore, unless the expression in the 
brackets in (6) is close to zero, the (slow) variable h chan- 
ges according to (7) with To = Tc,eq(h). A rough estima- 
tion of the characteristic amplitudes of oscillations with 
6T ~ 10 100 K (theoretical estimation, Figs. 2, 4) and 
8h ~ 2 x 10 -4 cm (experimental observation, [7J) yields: 
k T ~ T T  1 6T/6h ~ 2x 1 0  6 - -  107 K/cms. The exact value 

of kx is unimportant because Tc is the fast variable, 
i.e., TT ~ rh. 

2 Zero isoelines. Temperature dependent absorptivity 

The oscillations observed during laser direct writing 
of W from WC16 + H2 cannot be explained on the basis of 
latent heat effects [7]. The estimated heat release 
Qp/MdV/dt  ,~ 6.2 x 10-4W (p ~ 19.3 g/cm 3, molar 
weight M ~ 184 g/mole, deposition rate dV/dt  
10-s cm3/s, and heat of reaction Q(298 K) ~ 596 kJ/mole 
[15]) can be ignored in comparison to the absorbed laser 
power (0.1-1 W). The oscillations can as well neither be 
attributed to changes in the heat conduction along a stripe 
of varying cross section [16] nor to transport limitations 
in the gas phase [12]. The latter would produce oscilla- 
tions with periods of only t ~ rZ/D ~ 2.5 x 10-6 s 
(r ~ 50 gm, D ~ 10 cm2/s [15]). Furthermore, with the 
growth rates observed in [7], the system is not strongly 
transport limited (with W ~ 1 gm/s and Ps/Pg ~ 4.7 x 106 
for 0.5 mbar WC16, the dimensionless parameter becomes 
(Ps/Pg) Wr/D ~ 0.23). A key in the interpretation of the 
oscillations are the changes in absorptivity A, observed 
experimentally [7]. 

In the visible, the absorptivity of pure W changes 
slightly with temperature. More important are changes in 
A related to changes in the morphology of W deposited at 
different temperatures, or different growth rates. These 
can be due to gas-phase and/or surface nucleation pro- 
cesses with subsequent changes in surface roughness [17]. 

However, because oscillations have been observed 
only in the presence of small amounts of oxygen [7], the 
most plausible explanation for the changes in A is the 
formation of WO3 on the surface of W lines. WO3 strong- 
ly absorbs 514.5 nm Ar+-laser radiation. It has a high rate 
of oxidation even at pressures around 10-5 atm (up to 
10 -3 gm/s at temperatures around 1500K) [18]. The 
equilibrium (with respect to oxidation-sublimation) value 
of the oxide layer thickness is a steep function of T. This 
can provide fast changes of A ( T )  from the value of pure 
W to the (much higher) value of WO3. It may also explain 
the good localization of dark regions along the stripe [7]. 

Phenomenologically, we describe this behavior by a 
dependence of the absorptivity on temperature. Such a de- 
pendence, if strong enough, can lead to the appearance of 
oscillations. 

The physical reasons are the following. Let us assume 
that A(T)  increases with temperature faster than heat 
losses do. Then, if the temperature occasionally increases, 
the total energy input into the system increases. In this 
case, T continues to increase further if the laser power is 
kept constant. Later, extensive growth increases the cross 
section of the stripe to such an extent, that heat losses 
along the stripe exceed the absorbed power. As a conse- 
quence, the temperature drops again. 

Within the relevant region (see below) the step-like 
increase in absorption observed in [7] can be described by 

A1 
A(T) = Ao + [- /TA -- T'~ q" (8) 

Lexp + 1 J 
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bTA is the width of the step in A at T A and A1 its 
amplitude. Some comments are appropriate. 

First, in [7], the absorptivity was measured as a func- 
tion of the scanning velocity. The model suggests that 
there is a direct correspondence between Vs and To 
[10, 13]. Therefore, we have fitted the experimentally 
measured A(vs) dependence by varying the coefficients in 
(8). The A(vs) dependence was drawn in the same way as 
the dependence of r(vs) and h(vs) in [10, 13] with To as 
a parameter along the curves. It is clear from (4, 5) that an 
increase/decrease in A within a certain temperature inter- 
val will cause an increase/decrease in height and width of 
the stripe. It was confirmed in [7], that oscillations occur 
in an interval Vs, where the width and height of stripes 
increases dramatically. The A (Vs) dependence correspond- 
ing to the experimental data ([7], Fig. 6, upper curve) is 
shown in Fig. 1. 

Second, the exact behavior of A(T), in particular at 
low and high temperatures has almost no influence. Most 
important is the region, where the increase in A occurs, 
because it provides the non-monotonous behavior of the 
T, zero isocline (see below). For  this reason, we have 
chosen the relatively simple function (8), which does not 
describe the decrease in absorption at high scanning vel- 
ocities, as observed in [7]. 

Third, the absorptivity may depend not only on tem- 
perature, but as well on the average roughness of the 
deposit which, in turn, depends on the growth rate W. 
However, with constant pressure of the precursor gas 
there is a direct correspondence between the growth rate 
and the temperature and such changes in A(T) are in- 
cluded in (8). 

For  the mathematical description of the oscillations 
we use the concept of zero isoclines [19]. In the case under 
consideration, the zero isoclines of h and To are the curves 
in the [-h, Tel-plane (phase plane) where the time deriva- 
tives of these variables are equal to zero (6, 7). Therefore, 
the T~ zero isocline is given by (4). It is shown by the 
dashed line in Fig. 2 for A = const and by solid line for 
A = A(T ). The h zero isocline (dash-dotted line) is given by 

h(T~) = 7 a- W(Tc). (9) 
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Fig. 2. Phase portrait of the deposition process in the [To, h]-plane 
(see text) calculated from (4, 5) and (9) with Vs = 1.5 • 10 3 cm/s. 
Other parameters are the same as in Fig. 1. Dash-dotted curve: h 
zero isocline (9); dashed curve: To zero isocline (4) with A = const 
(A1 = 0); solid curve: To zero isocline with A(T) given by (8): 1, 4 are 
stationary points. Arrows indicate the limit cycle for A = A(T) 

The positions of the zero isoclines in the phase plane 
determine the qualitative behavior of the solution of (6, 7). 

For  A = const, the system first relaxes horizontally 
towards the To zero isocline (dashed line in Fig. 2) and 
then slowly approaches the equilibrium position 4, given 
by the intersection with the zero isocline for h (9). This 
equilibrium position is stable. 

The T~ zero isocline for an absorptivity which in- 
creases with temperature is given by the solid curve. The 
evolution of the system is now quite different. First, it also 
relaxes to the Tc zero isocline, but cannot reach the 
equilibrium point 1, which is unstable. Thus, it jumps from 
one branch of solid curve to another at points 2 and 3, and 
the system ends up in a limit cycle, demonstrating an 
oscillatory behavior. 

3 Conditions for the existence of oscillations 

Oscillations occur, if the only equilibrium point 1 is placed 
between 2 and 3. These positions are given by zero deriva- 
tives of the right side of (4) with respect to T~, From these 
conditions, we obtain the expressions for the slope of the 
A(To) function at these points: 
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Fig. 1. Dependence of absorptivity A on the scanning velocity Vs as 
calculated from (8), (4, 5) and (9). The parameter values are: q = 1.6, 

=1.25, y=1.3, a=0.962, Z=1.0, KD=8x106erg/cmK, 
K s=3• serg/cmK, K*=26.6, T o=443K, Tth=1200K, 
T, =2525 K, ko = 1.6 x 10 .3 cm/s, Wo = 7.5 x 10 -4 cm, P = 650 mW, 
Ao = 0.45, Ai = 0.45, TA = 1250 K, 5TA = 10 K 

dA d# r2,3 + -2ZWo) ~-o to=r2,3 = A ( T 2 , 3 ) ~  to= (1 4 l# l 

A ( T 2 , 3 )  (1 4 I# +2ZWo) 

T2, 3 (1 - A T ~ h / A T 2 , 3 )  I/2" 
(lo) 

That means that the dependence A(Tc) in some temper- 
ature interval should necessarily be steeper than linear 
A oc To, since the factor behind A/T in (10) always exceeds 
unity. This is the condition for a positive feedback. The 
energy input increases faster with temperature than heat 
losses. Note that oscillations were not observed when 
changes in A were not strong enough [-7]. From Fig. 2 it is 
clear that the oscillations will occur if the h zero isocline 
(dash-dotted line) lies below the To zero isocline at 
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T~ = T 2 and above it at T~ = T3, i.e., (4, 5) for: 

W ( T : )  a l:  W(T3) ~ l: 
- -  < - -  _-Sa Tr ' and > "K* ~ . (11) 

I) S ~ K * T2 I)S f Tc = T3 

The region given by (11) is shown in Fig. 3 for the case of 
W deposited on quartz from WC16 (full curves). The 
shaded area shows the experimentally determined de- 
pendence. 

If only one of the conditions (1) is fulfilled, deposition 
is stable. If both inequalities are reversed, zero isoclines 
have three intersections, two of them are stable, the inter- 
mediate is a saddle point. This corresponds to the regime 
of bistability, when the system has two different stable 
regimes with all external parameters being the same. 

However, because W(T3) > W(T2), this requires the 
right side of (11) at T3 to be greater than at T2 which is 
possible only with an even stronger increase in absorptiv- 
ity with temperature. Thus, oscillations and bistability can 
hardly be observed in the same system. 

Let us simplify (11) for low and high laser powers. For  
low laser powers l# < Zw0, and expressions (10, 11) be- 
come dependent on the single parameter J only: 

q p2 Vs 
J =  

7Z 2 KDKsWg ko" 

Thus, from (11) the region in the [P, vsl-plane where 
oscillations occur is determined by: 

C l V s  1/2 < P < C2vs 1/2, (12) 

C~ and Ca are constants. With increasing scanning velo- 
city, the power interval for oscillations strongly decreases 
and can become experimentally unobservable. 

With high laser powers l# >> ZWo, and (4, 9) simplify to: 

h ( T ~ ) -  aPA(T~) 
t/KDATth # 1e-U, (13) 

h ( T r  7PA(Tr #e-UW(To).  (14) 
tlKsATthVS 

The positions of T2, 3 a re  given again by the zero deriva- 
tive of the right side of (13), with respect to T~, namely: 

d 
dT~ [ln A(To)]ro = r~.3 = (AT~ - ATe)- ~/2 

x [1+ #- '(T~)] ro=r~,~ (15) 

The condition (11) transforms to: 

r ,  <o- Vs Ks < # 2 ( r 3 ) e x p  - - ~  (16) 
#2(T2)exp -- ~ 7 ko KD 

The laser power does not enter these conditions. Thus, the 
region of oscillations in the [P, Vs]-plane for high powers 
is a band parallel to the P axis. This tendency is also 
revealed in the experimental results (Fig. 3). 

4 D y n a m i c s  of  osci l lat ions  

In this section, we will show how oscillations depend on 
laser power and scanning velocity. The time-dependent 
behavior of the temperature To and height h can be 
obtained from (6, 7). A numerical solution is shown in 
Fig. 4. The width r = ~a is calculated from (5). The laser 
power P = 650mW and the scanning velocity 
Vs = 15 pm/s correspond to values employed in [7]. The 
sharp initial increase in temperature is due to the small 
starting value of h and correspondingly small heat losses. 
This effect exists also in the experiments. One can see fast 
changes in temperature, corresponding to the jumps be- 
tween the branches of the To zero isocline at points 2 and 
3 (Fig. 2). The changes in height are smoother. The behav- 
ior of h and 2r is in reasonable agreement with experi- 
mental values [7]. The main contribution to the temporal 
period of oscillations results from the time on the To zero 
isocline between jumps. It can be estimated analytically by 
integrating (7) along h = heq(ro). However, because of the 
complexity of the functions involved, it is easier to deter- 
mine the period for different parameter sets directly from 
solutions as, e.g., the one depicted in Fig. 4. 

The dependences of the spatial period A on Vs and 
P are shown in Fig. 5. Vertical lines (dashed) limit the 
regions where oscillations occur. Clearly, A was obtained 

n ~ 0.8 ~ / , , , , .  
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VELOCITY v s [pm/s] 

Fig. 3. Region of oscillations in the [P, Vs]-plane as calculated from 
(11). Parameters are the same as in Fig. 1. The shaded area indicates 
the region where oscillations have been observed experimentally for 
W deposition from WC16 + H2 [7] 

200" 

i ~ 100 
o ~  

, . , . , �9 , �9 

~ ~ . ! "  "", 2r/"., b'... i"".. "'... 

0 5 10 15 
TIME [s] 

15oo E 

1400 w 

< 
1300 

W 

1200 

Fig. 4. Time-dependent behavior of the height (full curve, inner scale 
on left axis) and width d = 2r = 2~a of stripes (dotted curve, outer 
scale on the left axis) and the central temperature T c (dashed curve). 
The parameters employed in (6, 7) were kT = 2 x 106 K/cm s, initial 
conditions: To(0) = 1210 K, h(0) = 1 pro. Other parameters are the 
same as in Fig. 1 
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Fig. 5. Calculated dependences of the spatial period A on laser 
power P (dashed curve, v s = 1.5 x 10 3 cm s) and scanning velocity Vs 
(solid curve, P = 650 mW). The (vertical) dashed lines indicate bor- 
ders of regions where oscillations occur 

by multiplying the temporal  period by Vs. A increases 
faster than linearly with both the laser power and the 
scanning velocity in almost all regions where oscillations 
exist. This is in agreement with the experimental observa- 
tions. The experimental values of A [7] exceed the numer- 
ical ones by about  a factor of 2. The significant increase in 
A at the borders is an artifact which is due to the approxi- 
mations made. When the intersection point 1 (Fig. 2) is 
close to one of the extrema of the To zero isocline (points 
2, 3), the approach based on only two differential equa- 
tions becomes too crude and one has to consider the 
temperature distribution near the laser beam more accu- 
rately. When the parameters  are beyond the range of the 
oscillations, but close to it, the model produces damped 
oscillations, as it was observed in the experiments. 

The sensitivity of oscillations to the presence of hydro- 
gen [77 can be tentatively attributed to two factors. First, 
as demonstrated in [14], the kinetic parameters of W de- 
position depend on hydrogen content. Thus; the position 
of the oscillatory region (Fig. 3) can change with hydrogen 
pressure, and the oscillations can disappear if other para- 
meters are kept constant. Second, if oxidation proceeds in 
the transport-limited regime, the concentration of oxygen 
near the surface can decrease due to the decrease of the 
oxygen diffusion coefficient with increasing hydrogen 
pressure. Most  probably, the oxidation kinetics also chan- 
ges with hydrogen content. 

5 Conclusions 

It has been shown that the oscillations observed in laser 
direct writing of W lines on SiO2 substrates can be de- 
scribed on the basis of a one-dimensional approach. The 
laser powers and the scanning velocities at which oscilla- 

tions exist, and their influence on the period of oscillations 
are estimated. The agreement with the experimental re- 
sults is semiquantitative. In the W system, oscillations are 
due to an increase in absorptivity with temperature. How- 
ever, the present approach can be applied to other systems 
as well. For  example, the absorptivity of semi transparent 
deposits can depend not only on temperature, but also on 
height h. If the latent heat of the reaction should be taken 
into account, the oscillatory shape of the zero isoclines can 
be provided by the additional heat-release term Q W ( T c )  
in the right side of (6) rather than by the temperature- 
dependent absorptivity. In any case, the crucial point for 
the existence of oscillations is the non-monotonous  shape 
of the zero isocline for the fast variable. For the problem 
discussed in the present article, the fast variable is the 
temperature near the center of the laser beam. 
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