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Abstract 

Laser direct writing of thermally well-conducting deposits on thermal insulators is described on the basis of a 
one-dimensional model. Different types of instabilities are discussed. The theoretical results are compared with experimental 
observations. 

1. Introduction 2. Dimension considerations 

The theoretical analysis of laser direct writing [I] 
requires the simultaneous solution of several 3D 
partial differential equations for time-dependent ge- 
ometries. Such calculations can be performed only 
numerically on fast computers. While such calcula- 
tions allow proper simulation of the growth process, 
they do not provide an understanding of the basic 
functional dependences observed experimentally. 

Subsequently, we will develop a simple ID model 
which does not pretend to describe experimental data 
on direct writing with an accuracy better than 30%- 
40%. However, this model provides the physical 
picture of laser direct writing for a wide range of 
experimental parameters. In particular, it explains the 
development of oscillations in the width and height 
of stripes that have been observed within certain 
parameter intervals. 

Statements based on dimension analysis are valid 
irrespective of the simplifications made. Let us as- 
sume a quasi-stationary temperature distribution, sur- 
face absorption, heat transport by conduction only, 
and a kinetically controlled reaction without changes 
in latent heat. The problem is then described by the 
steady heat equation for the different materials and 
the equation of growth. In dimensionless variables 
these equations include non-linear functions charac- 
terising the properties of the materials and depend on 
only two parameters: P/KoTowo, and v,/ko. Here, 
KO is some reference heat conductivity (e.g, of the 
substrate at To),  To is the temperature of the sur- 
rounding, w, the radius of laser focus, k, a pre-ex- 
ponential factor in the growth rate function, P the 
laser power, and us the scanning velocity. 

Thus, the shapes of the structures produced with 
constant ratios P/wo and u,/ko are the same, with 
the coeficient of proportionality equal to the ratio of 
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experiment, factors that have been ignored play a 
decisive role. 

For high laser powers or small laser focuses, 
when the characteristic size of the microstructure 
becomes large in comparison to wl,, the laser can be 
considered as a point source. Then, the problem 
possesses only the parameter v,/k, and one combi- 
nation of parameters with the dimension of a length: 
r, = P/KoTo. If we normalize to ro instead to w,, 
P will not enter the equations. Therefore, two de- 
posits are similar, if they were grown with the same 
ratio v , /k , .  Linear sizes of microstructures scale 
proportionally to r,, and thus to the laser power. 
Therefore, qualitatire changes in the shape of de- 
posit should depend only on v,. Otherwise, the finite 
size of laser focus is important. 

These considerations are valid for arbitrary tem- 
perature dependences of heat conductivities, absorp- 
tion coefficients, and rate function. They permit also 
arbitray changes in geometry and corresponding 
absorbances. Dimension considerations have thus a 
wide range of applicability. 

3. General 1D approach 

3.1. Main assumptions 

In this section we briefly discuss the 1D model 
presented in Ref. [2]. In addition to the assumptions 
already made, we consider the deposition of a good 
heat conductor, for example a metal, on a thermal 
insulator, i.e. the ratio of heat conductivities K * = 
K,/K, >> 1 (indexes S and D stand for substrate 
and deposit, respectively). The heat flux from the 
region near the laser beam is then directed mainly 
along the deposited stripe. 

3.2. Heat equation 

Let the stripe be of uniform shape with height h 
and width d = 2r .  The meaning of the main quanti- 
ties is shown in Fig. 1. Let 8 = T - To be the 
temperature rise, F the cross section of the stripe, 
and A the absorptivity. 8,(x) has the meaning of 
the temperature rise at the interface deposit-sub- 
strate. Because K * >> 1, 8, is in first approxima- 
tion independent of z. For wl, << r ,  the energy bal- 
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Fig. 1. Schematic picture for laser direct writing. The coordinate 
system is fixed with the lascr beam, Tllc centre of the laser beam 
of radius we is at the origin x = 0; the fonvard cdgc of the stripe 
is at x =  a. T, and T,  are the concsponding temperatures. The 
temperature profile is indicated by the dotted curvc. The width of 
the stripe is d = 2r .  Temperature at infinity is To. 

ance for a slice of a stripe between x and x + d x  
can be written as [2] 

e,l,= -, = 0. (3.1) 
Here 77 = 2 characterises losses to the substrate 

due to heat conduction. l 2  = FK * / q  characterises 
the drop in the laser-induced temperature rise in the 
x-direction. If the parameters of the stripe are known, 
the solution of this problem gives the temperature 
distribution, in particular 8, - B,(x = 0) and 0, = 
O,(x = a) [2]. However, these parameters have to be 
determined self-consistently by taking into account 
the growth process itself. The cross section and the 
width of the stripe are characterised by F - ( h r ,  r 
= (a where 5 and 5 are of the order of unity. With 
two additional equations provided by assumptions 
about the temperature at the edge of the stripe and 
the dynamics of the growth process (see (4.1) or 
(4.3) and (3.4)) we can determine the unknown - 
quantities. 

We consider T, as a parameter in all important 
dependences. We then obtain: 
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The function p has been introduced for conve- 
nience. From (3.3) we find that Ks influences mainly 
the width of the stripe, and K, its height. 

3.3. Equation of growth 

As in Ref. [2], we write the equation of growth in 
a coordinate system that is fixed with the laser beam. 
It is useful to think about the hot area around the 
laser beam as the 'chemical reactor' [3], where the 
chemical transformations result in the 'production' 
of h with the rate W(Tc) given by an Arrhenius-type 
function with a pre-exponential factor ko (cm/s) and 
activation temperature T,. This reactor is an open 
system: The removal of h is provided by the scan- 
ning term v, ah/ax which we approximate by 
us h/ y a where y = 1. Under stationary conditions 
this yields 

us( 0,) 

= ya/hW(Tc) = ( Y ~ l K * / r l ) ~ ~ W ( ' 4  + To). 

(3.4) 

(3.4) and (3.2), (3.3) allow to draw dependences 
r(u,), h(u,), as long as function 8,(8,) is known. 

4. Conditions at the edge of the stripe 

4.1. Systems with temperature threshold 

For some systems significant deposition is only 
observed above certain threshold temperature, T,. 
An example is the deposition of W from WCI, [4]. 
Then, the temperature at the edge of the stripe is 
equal to the threshold temperature: 

ee(ec) = et,. (4.1) 

Corresponding dependences h( us), r (  us ), and T,( v, ), 
are depicted at Fig. 2. The main features of this case 
are: The widths and heights of stripes are propor- 
tional to the laser power. Tc increases with increas- 
ing scanning velocity. The height decreases 
monotonously with us. The width shows a non-mo- 
notonous dependence on us: with small velocities it 
increases and then starts to decrease. The cross 
section of the stripe, F a rh, always decreases with 
us. 

VELOCITY v, [pmis] 

Fig. 2. Typical dependences h(u,), r(u,) and T,(u,) for systems 
with threshold behaviour as calculated from (3.2)-(3.41, (4.1) with 
17 = 1.6, l =  1.33, 5 = 1.25, y = 1.3, K, = 8 X lo6 erg/cm/K, 
Ks = 3 X lo5  erg/cm/K, K * = 26.6, To = 443 K ,  T,, = 1200 K, 
T, = 2525 K,  k ,  = 1 . 6 ~  cm/s, P = 650 mW, A = 0.55. 
Parameters correspond to the deposition of W from WC16 on 
quartz [2]. 

The characteristics of the stripe in the point of 
maximum width ( p = 1) are easily calculated from 
(3.2)-(3.4). The temperature T F x  at which the max- 
imum width is achieved depends only on Tt,, and 
u,"ax a W(TFX), All of these features are in good 
agreement with experimental data on the deposition 
of W lines onto SiO, substrates [2,5]. 

4.2. Systems with high activation energy 

If there is no apparent threshold for deposition, 
the borders of the stripe are determined by the 
localisation of the chemical reaction, i.e. the deposi- 
tion rate at the border drops significantly, in compar- 
ison to the rate in the hottest region: 

with p about unity (detailed estimations yield P = 
T/ y ,). Then, for the Arrhenius rate function: 

This expression should now be used instead of 
(4.1). A typical graph is presented at Fig. 3. It can be 
shown that p increases monotonously with 8, for 
reasonable values of To, Tc, and T,. Both the height 
and the width of the stripes, decrease monotonously 
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Fig. 3. Typical dependences h(u,), r(u,) and T,(u,) for systems 
with high activation energy and no threshold. Calculations have 
been performed on the basis of (3.2)-(3.4), (4.4) with 71 = 1.6, 
5 =1.33, 5 = L O ,  y =1.3, P -1.8, K ,  =1.5X106 erg/cm/K, 
Ks = 2.5 X 10' erg/cm/K, K * = 6, To = 300 K, T,  = 22000 K, 
k, = 2 . 7 ~  l o 4  cm/s, P = 100 mW, A = 0.57. 

with p and scanning velocity. If the activation tem- 
perature is very high, i.e. T, >> Tc = 6, >> To: 

From (4.4) we obtain the approximate dependences: 

with 

Both the height and the width drop off rapidly with 
v,. This was in fact observed in many experiments 
[1,61. 
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5. Refinements of the general model 

We will now study in further detail the influence 
of the laser focus and temperature-dependent heat 
conductivities. 

5.1. Finite laser focus wl, 

With low laser powers, the width of stripes, given 
by (3.3), can become comparable to w,. Then, the 
laser beam cannot be considered as 'a point source. 
The temperature distribution cannot become much 
narrower than w,. In the simplest semi-empirical 
approximation we can just add to the expression for 
a in (3.3a) a term xw, with x = 1, 

with corresponding changes in formulas (3.3), (3.4). 
1 and p are still given by (3.2). With high laser 
powers l p  >> xwo and the first term in (5.1) ex- 
ceeds the second so that original expressions are 
obtained. For low laser powers l p  << ,y wo and the 
width becomes practically independent of P and is 
determined by the second term in (5.1): 

Thus, the width of the stripe is independent of power 
while its height is proportional to p2. 

In the absence of a threshold but a high activation 
energy, p << 1 and 6, = 6, = Tc (see (4.4)). Then, 
approximately r(o,) = const, ~ ( L J , )  a p2[const - 
In( vS>l2. 

5.2. Temperature depe~zderzce of heat conductivities 

Up to now we have assumed that the heat conduc- 
tivities of substrate and deposit are constants. Arbi- 
trary temperature dependences of heat conductivities 
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can be incorporated into the model via the Kirchhoff 
transform [7]. Then, instead of (3.1) we obtain 

Here K,, K,, should be taken at T = To, and 
Os(OD) is given by the relation T(0,) = T(9,) which 
holds for the interface between the deposit and the 
substrate. Eq. (5.3) is easily solved together with the 
boundary conditions in (3.1) using the conservation 
law: 

with 

Using (5.4), after some calculations we obtain in- 
stead of (3.2ab): 

out any threshold, 8, is not constant. For a high T,, 
the value of T, is close to Tc (see (4.3a)) and this is 
the case also for 8, and 8,. Then, we can use a 
Taylor expansion for O,, ,u(Oc), l(Oc), etc. Corre- 
sponding formulas show, that p(Oc) can start to 
decrease with Tc. Consequently, the width or height 
of stripes can increase with us if the exponent m in 
the corresponding parametric dependence r ,  h a T," 
is positive. For the power dependences of the heat 
conductivities of the deposit and the substrate, KD,s 
a TnD2s, we obtained the following picture in the 
(n,, ns) plane (Fig. 4). 

6. Temperature dependence of absorptivity, 
oscillations 

The temperature dependence of the absorptivity 
A = A(T) can be due to different reasons: changes in 
morphology, surface chemistry, optical properties, 
etc. Here, we assume that A(T) function is known 
and dA/dT> 0. We employ (5.1) for a (w, is 
comparable with r )  and (4.1) for 0, (deposition with 
threshold). This corresponds to the case of W deposi- 
tion on quartz [8].  

When the temperature increases, the input of en- 
ergy into the system increases due to the increase in 
absorptivity which in turn increases the temperature. , 
Then, due to the extensive growth, the cross section 

Then, we substitute I and p in (3.3) and (3.4). of the stripe also increases and the heat losses due to 
If the threshold is important, 9, = O,, = const, and conduction along the stripe exceed the input of en- 

from (5.5a) we find that p increases with 0,. Thus, 
ergy, so that the temperature drops again. 

nonlinearities in K(T) do not cause qualitative 
The state of the 'chemical reactor' mentioned in 

changes in the dependences r(v,) and h(v,). With- Section 3.3 is characterised by the temperature Tc 

-3 -2 -1 0 1 2 3 
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decrease 
with v, 

n 
width 
increases 
with v 
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Fig. 4. The dependence of h and r on us for temperature-depen- 
dent heat conductivities KDSs(T) a T n D . S .  n, and n, refer to the 
deposit and the substrate, respectively. 

and the height h. The width of the stripe changes 
fast in comparison to h and is related to Tc via 
(3.3a). If oscillations occur, h and Tc are not con- 
stant but change with time. At each moment we can 
estimate Tc using stationary formulas for the uniform 
stripe whose cross section now depends on time. 
This implies, that the spatial period of oscillations is' 
relatively long. The evolution of our 'reactor' can be 
described by two ordinary differential equations for 
Tc and h where Tc should be considered as 'fast' 
variable, i.e. it practically instantaneously relaxes to 
its zero isocline h = h ( ~ , )  which determines the 
equilibrium value of Tc for the current value of h. 
The time of this relaxation is about 12/0,. Then, 
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the slow variable h changes according to its own 
evolutionary equation while T, is related to h via the 
equation for T,-zero isocline. The zero isoclines for 
T, and h are given by (3.3b) and (3.4) respectively, 
with a taken from (5.1): 

where I depends on P and A(T). If A is constant, 
we obtain from (6.la) the dashed curve I11 in Fig. 5. 
Then, the system reaches the stable equilibrium 
position 4 which is given by the intersection of curve 
I11 with the zero isocline for h (6.lb9, curve I. 

For A =A(T), the 6,-zero isocline is given by 
curve 11. Here, the dependence 

has been employed. AT characterises the width of 
the temperature interval near T, where a drastic 
increase in absorption takes place. Now the system 
first relaxes to the 6,-zero isocline (curve II), but 
then it cannot reach the equilibrium point 1, which is 
unstable, but jumps from one branch of curve I1 to 
another at points 2 and 3 which are minimum and 
maximum of the curve 11. Thus, the system ends up 
in a limit cycle, demonstrating an oscillatory be- 
haviour. 

TEMPERATURE T [K] 

Fig. 5. Phase portrait of deposition process in the (T,, 11)-plane 
(see text) calculated from (6.la, b), (4.1) and (6.2) with ,y = 1.0, 
A ,  = 0.45, A,  = 0.45, T,  = 1250 K, AT = 10 K, L; = 1.5X 
cm/s, wo = 7.5 X cm. Other parameters are the same as for 
Fig. 2. For dashed line A,  = 0. I :  It-zero isocline (6.lb), 11, 111: 
T,-zero isocline (6.la). 1, 4: stationary points. Arrows indicate 
limit cycle for A = A(T).  

VELOCITY v, [pmls] 

Fig. 6. Rcgion of oscillations in the (P, GI-planc as calculated 
from (6.3), with (6.11, (4.1) and (6,Z). Paramctcrs arc the same as 
in Fig. 5. Shaded arca indicates rcgion wlicre oscillations have 
bcen observcd expcrimcntally for W dcpasition from WCI, [8]. 

Oscillations cart occur if the oitly equilibrium 
point 1 is situated between points 2 and 3. These 
extrema exist only if A(T)  is steep enough to ensure, 
that energy input is more sensitive to temperature 
changes then the heat losses (positive feedback). An 
oscillatory type of the intersection between the iso- 
clines will take place, if curve I is below curve I1 at 
6, = 02, and above it at 6, = O,, i,c. (see (6.1)) for: 

The region in the ( P ,  1;)-plane where oscillations 
occur (given by (6.3)) for the case of W deposited on 
quartz is depicted on Fig. 6. F Q ~  low laser powers 
1,u << xwO, and we can derive from (6.3) that the 
boundaries of this region are C,L!;!,-'/~ < P < 
C,L~; With increasing scanning velocity this re- 
gion becomes very thin and in experiments can even 
disappear. With high laser powers the region where 
oscillations occur is between two lines, parallel to 
the P-axis in the (L',, P)-plane. Fig. 6 shows semi- 
quantitative agreement with experimental results. 

7. Temperature gradient in adirection - 
discontinuous deposition 

Up to now we have assumed that the temperature 
in z-direction is uniform. This is a good approxima- 
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tion for thin stripes. In reality, however, the tempera- 
ture at the surface of the deposit is somewhat higher 
than at the interface to the substrate. This difference 
becomes more pronounced with increasing thickness 
of the stripe. The effect can be estimated by employ- 
ing a Taylor expansion: 

The derivative can be determined from the conti- 
nuity of the heat flux at z = 0, and we used an 
estimation aT,/dz I ,=o = Bs/r. This yields for 8,: 

Here, the coefficient 6 = 1 accounts for uncertain- 
ties in the approximations. For h/r = 1, K "  = 10, 
8, = 2 X l o3  K, the difference between the tempera- 
ture at z = h and at z = 0 can reach hundreds of 
kelvin, which is crucial for the deposition with high 
activation energies. 

This can lead to the following phenomena: Let us 
consider two points a t  the surface of the stripe - 
near the edge x = a, and near x = 0. With decreas- 
ing us both Tc(z = 0) and Te decrease, because of the 
increasing cross section of the stripe. From the other 
point of view, the stripe becomes thicker, so that the 
temperature at  the surface of the deposit near x = 0 
increases, due to the second term in (7.2). The ratio 
of growth rates at  the surface of the deposit at points 
x = 0 and x = a is determined by the difference in 
corresponding temperatures. But the temperature Te 
at x = a does not contain the increasing term due to 
the temperature gradient in the z-direction. With 
decreasing scanning velocities the ratio h/r  in- 
creases, thus increasing the ratio of growth rates. 
Growth is perpendicular to the surface of the deposit 
and with h/r  = 1 the vector of growth has consider- 
able components in the x-direction. Thus, at low 
scanning velocities growth near x = a cannot keep 
up with growth near x = 0. Therefore, there exists a 
minimum scanning velocity below which continuous 
deposition of a stripe with finite slope near its edge 
becomes impossible. As a consequence, the stripe 
will tend to turn over like the front of a nonlinear 
wave. This was observed during deposition of Si [9] 
and C [lo] on glass. Let us incorporate this physical 

picture into our model. The position of the edge of 
the stripe is determined by (4.2), but Te and Tc have 
a different meaning now. Te denotes the temperature 
at the edge of the stripe, i.e. at x = a, z = 0. There- 
fore, Te is exactly Te which enters the boundary 
conditions of the heat equation and formulas (3.2), 
(3.3). T, on the right side of (4.2) is now the 
temperature at the surface of the deposit and should 
be taken from (7.2). Now we can rewrite the rela- 
tionship (4.3) between 8, and 19, in terms of Oc, 6Je, 
and Tc at z = 0, which enter (3.1) and the subse- 
quent formulas. With E = 6 h / K X  r we obtain for 
small E and Tc/Ta: 

The term with E is due to the temperature difference 
in the z-direction. Clearly, E << 1, because K * >> 1. 

Let us find y. E is a function of y and we write 
instead of (3.2a): 

ee 
- = cosh- 
ec 

with 

As will be confirmed later, p << 1, and we can 
expand cosh p in a Taylor series. This gives a 
biquadratic equation for m = p2 with the solutions: 

In (7.5) only the ' + ' sign is physical, because it 
gives the right answer for 6  = 6 ,  = 0. As long as a 
solution exists, y = << 1. This justifies the 



464 N. Arnold et 01. /Applied Surface Scierice 86 (1995) 457-465 

100 
VELOCITY v, [ ~ m l s ]  
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Fig. 7. (A) The discontinuous deposition at low scanning veloci- 
ties due to finite thickness of the stripe as calculated from 
(3.2b)-(3.3), (7.61, (4.3) and p given by (7.5). S = 0.3, other 
parameters are as in Fig. 3. (B) The same picture determined 
experimentally for two different laser powers for the deposition of 
Si from SiH, on glass 191. 

Taylor expansion (7.4). With the knowledge of p we 
can draw the parametric dependences h(v,), r(v,) 
using 8, as a parameter in the usual way. When h/r 
is about unity, growth takes place in the direction 
perpendicular to the surface. For that reason, the 
term ya/h in (3.4) should be replaced by (ya/hXl 
+ (h/ya)2)1/2, giving instead of (3.4): 

Note, that the rate function is taken at the tempera- 
ture a t  the surface of the deposit. The model calcula- 

Thus, the solutions disappear at low T,, i.e. at low 
us. At this critical point 

PC, = ( = ( 2 ~ ~ ) ' ~ ~  

6 7  1/2 
€0 ( ) 1 2 ( )  . * - l < l ,  

,a=-= 2 
P c r  2 5  l 

hcr K *  -=-  - 1. 
r a  6 

( 7 . 8 ~ )  

The temperature Tccr can be estimated in a crude 
way from (7.7). It depends on K ' and T, only. With 
high laser powers us,, depends on the properties of 
the substrate, T,, and the pressure of the precursor 
gas only, and it is given by (7.6) where one should 
use critical values. 

From (7.8b) we find E, 1, which is also true 
for sub critical values of E, because then p > p,,. 
This confirms the Taylor expansion in the z-direc- 
tion. There is no singularity when the solution disap- 
pears: all quantities are finite. The critical ratio of the 
height/width turns out to be dependent only on 
geometrical factors and it is about unity. Thus, there 
is no hope to produce 'wall-type' structures. The 
height of the stripe can become of the order of its 
width, or a continuous deposition breaks off. 

tions presented at Fig. 7A simulate the experimental VELOCITY v. lumlsl - . .  . 
data for P = 100 mW in Fig. 7B. Real solutions exist 
as long as ~ , 2  - 2e0 > O. That gives (see (7.4)) Fig. 8. The dependence of the critical vclocity on laser power 

r;,,(P) as calculated from (7.10) (T,,, and p,,), (3.3) with a 
from (5.1) for r, and h,,, and (7.6) for LI~,. 8 = 0.3, ,y - 0.3, 
roo = 3 X l ow4  cm. Other parameters arc thc samc as for Figs. 3 

(7.7) and 7. Note the difference in scale for theoretical (full line) and 
experimental (Si from SiH,, dashed line) curves. 
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For finite laser focus we have to employ the 
formulas given in Section 5.1. Thus we can repeat 
the derivation of (7.4) with the same E = 6h/K ' r. 
However, E cannot be replaced by eO/p2, because 
the expressions for h and r are now different. In- 
stead of (7.4) we obtain: 

which can be approximated by: 

with 

This permits the determination of p. We are inter- 
ested in the influence of a finite wo on the critical 
parameters. The biggest root of (7.10) disappears at 
pCr = [( 02 + 1 6 ~ ~ ) ' ' ~  - @]/4. Solving (7.10) to- 
gether with p,, we find T,,, and then determine 
p ,  I ,  r ,  h, v, at the critical point. Note that Po, c0, 
and o depend on T, and P .  The plot P,,(u,), 
obtained by this procedure is presented in Fig. 8. PC, 
increases with v,. This increase is due to the finite 
size of laser focus w,. Otherwise v,, does not de- 
pend on P. This is in qualitative agreement with the 
experiments on Si deposition from SiH,. Note, how- 
ever, the difference in velocity scales. 

8. Conclusions 

Many phenomena observed in laser direct writing 
can be explained on the basis of a one-dimensional 

approach. Among them are typical dependences of 
the height and width of stripes on scanning velocity 
and laser power, oscillations, and discontinuous de- 
position at low scanning velocities. 
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