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Abstract. The pyrolytic LCVD (Laser-induced Chemical
Vapor Deposition) of fibers is studied theoretically. The
shape of fibers and the temperature distribution are cal-
culated self-consistently on the basis of a one-dimensional
model which takes into account changes of the radius
along the fiber. The influence of different parameters on
the fiber radius and the temperature is discussed. The
parameters investigated include the laser power and spot
size, the activation energy of the deposition reaction,
diffusion limitations in the gas phase, and temperature
dependences of the heat conductivities of the deposit and
the gas. The results are applied to the pyrolytic growth of
Si fibers from SiH

4
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2
.

PACS: 81.15.Gh; 44.10.#i; 42.55.!f; 68.55.Gi

During the last decade, pyrolytic laser-induced chemical
vapor deposition (LCVD) [1, 2], has attracted attention
as a convenient tool for repair and customization of elec-
tronic devices, and for the production of micromechanical
devices and different types of sensors [3]. In pyrolytic
LCVD, deposition proceeds in the area locally heated by
the laser beam.

Early studies concerned deposition of spots, fibers
[4, 5], and lines (laser direct writing) [6, 7]. The geometri-
cal parameters of lines were studied experimentally and
theoretically [8—10].

Under certain conditions, fibers may start to grow
towards the laser beam [11, 12] and three-dimensional
objects can be fabricated in this way [13, 14]. The purpose
of this article is to describe theoretically the shape of fibers
and their dependence on experimental parameters and
material properties.
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1 Model

A schematic picture of the growth process is presented in
Fig. 1. The laser beam is focused at the tip of the fiber.
Pyrolytic decomposition of gas-phase precursors proceeds
in the hot area near the tip due to the strong dependence of
the reaction rate, ¼, on temperature, ¹. Changes in the
fiber radius take place mainly in this region. Due to the big
difference in thermal conductivities of the deposit and gas,
i
$
<i

'
, the heat flows along the deposit and then gradual-

ly dissipates into the surrounding gas. For long fibers, the
influence of the substrate becomes unimportant and their
radius and shape become dependent only on the absorbed
laser power P, the radius of the laser focus w

0
, the proper-

ties of the gas and the deposit, and the parameters that
characterize the pyrolytic decomposition reaction.

With the experimental conditions employed in LCVD,
the propagation of heat is much faster than typical growth
rates, i.e., D

T
/l<¼ (D

T
+0.1—1 cm2/s is the heat diffus-

ivity, l+10—100 lm is the characteristic distance (1.7)).
Correspondingly, we consider the stationary heat equa-
tion for the fiber, taking into account changes in the
radius R"R(z), and heat losses into the ambient medium
(second term in (1.1a)):
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Here, i
$
and i

'
depend on the temperature of the deposit,

¹
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, and the gas, ¹

'
, respectively. A is the absorptivity and

¹
0

the ambient temperature. Because of the small temper-
ature gradients within the deposit in radial direction, the
temperature is assumed to depend on z only:
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Fig. 1. Schematic picture of the 1D model. The shape of the deposit
is given by R"R (z) and the temperature distribution by ¹(z). ¼(z)
is the growth rate at a particular point. Dashed curve near the tip of
the fiber illustrates the growth process in the steady-state regime. In
the dissipation region ¹ (z)P¹

0
, and R(z)+R

=
"const

The heat equation (1.1) should be solved together with the
equation of growth. At each point, characterized by the
coordinates (z, R(z)), the deposit grows in the direction
normal to the surface (Fig. 1). With quasi-stationary condi-
tions we can write
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Here, ¼(0) is the growth rate at the tip of the fiber at
z"0, and (1.3b) the initial condition for the radius R(z),
where, in the simplest case, s+1.

If the dependence ¼(z) is known, (1.1) and (1.3) allow
to calculate self-consistently the steady-state radius of the
fiber, R

=
,R(z"R), and the temperature at the tip,

¹
#
,¹

$
(z"0).

In order to exclude temperature dependences in ther-
mal conductivities from (1.1), we introduce linearized tem-
peratures via the Kirchhoff transform [15]:
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Within the gas, h obeys the Laplace equation and we
approximate the second term in (2.1a) by !i
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(z)/R(z). Here, the dimensionless coef-

ficient is g"1 with spherical geometry, and g(1 with
the present case, which is more close to a cylindrical
problem. The estimation of g is given in the appendix.

The continuity of the temperature (we neglect any
temperature jump) at the gas—deposit interface yields the
relationship between the linearized temperatures:
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This can be calculated from (1.4), which should be written
for the gas and deposit. This allows to rewrite (1.1) in the
form
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with the notation

l2(z),
i
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l characterizes the typical scale of the temperature drop in
z-direction.

Henceforth, we assume a one-step pyrolytic reaction.
In the kinetically controlled region we assume an Ar-
rhenius dependence:

¼(z),¼(¹ (z))"¼
0
exp (!¹

!
/¹ ), (1.8a)

where ¹
!

is the activation temperature and ¼
0

the pre-
exponential factor. With high reaction rates, diffusion
limitations within the gas become important and ¼ can
be approximated by the Smoluchowski equation [16]:
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Here, o
$
and o

'
is the density of the deposited species in the

solid and the gas phase, respectively. D is the gas-phase
diffusion coefficient, and ¼ is given by (1.8a). Temper-
ature dependences of ¼

0
and R

$*&
in (1.8b) are ignored,

because they are weak in comparison to the exponent in
¼(¹ ).

Equations (1.3) and (1.6) should be solved together
with (1.4), (1.5), and (1.8).

2 Analytical consideration

If diffusion limitations are ignored, approximate analyti-
cal solutions can be obtained. In this case, there exist two
distinct regions along the fiber: the region where the
radius changes due to growth and where the temperature
does not decrease significantly, and the ‘‘dissipation’’
region where the radius of the fiber is almost constant.
In this region heat losses to the ambient gas dominate,
and the temperature decreases up to ¹

0
. We write an

approximate solution for both regions and combine them
at the distance z, where R(z)+R

=
(Fig. 1).

In the region where R changes, we neglect the second
term in (1.6a). That means that changes in the heat flux
along the fiber are mainly due to changes in its cross-
section, and not due to the losses into the ambient gas.
Together with (1.7) and (1.6b), we obtain
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It is possible to refine (2.1) by expanding the second term
in (1.6a) into a Taylor series near z"0. A comparison
with numerical results in Sect. 3 shows that this does not
lead to significant improvements in results.
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In the growth region, R (z) changes according to (1.3a).
Dividing (1.3a) by (2.1) and using (1.4), we obtain
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In the absence of transport limitations, ¼ depends only on
¹ and not on R, the variables are separated, and (2.2) can
be directly integrated. The limits of integration are given
by the physical meaning of the growth region: For the
left-hand side of (2.2) they are R(z"0) and R

=
. The main

contribution on the integral at the right-hand side comes
from the region near z"0, where ¹"¹

#
, and the right-

hand side is singular. This allows to expand an exponen-
tial function on the right-hand side in a Taylor series near
¹"¹

#
and use the saddle-point method [17]. Compari-

son with direct numerical integration of (2.2) shows that
this procedure leads to an error of several percent. With
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The lower limit of integration can be set to !R because
¹

!
/¹

#
<1.

Equation (2.3) relates the unknown quantities ¹
#
and

R
=

. The second relation is found from the solution of
(1.6a) in the region (Fig. 1) where R,R

=
"const., and

l2"l2
=
"const., (1.7). In this case, (1.6a) is similar to an

equation of motion in a potential field and possess an
‘‘energy’’ conservation law:
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The constant in (2.4) is equal to zero because the left-hand
side vanishes with zPR. We employ (2.4) at the bound-
ary between the growth region and the dissipation region,
where we assume that R"R

=
, h

$
+h

$
(¹

#
). The last state-

ment means that the temperature does not change signifi-
cantly throughout the growth region. The value of Lh

$
/Lz

should be taken from (2.1) with l2
=

from (1.7). Rewriting
the g function from (2.4) in terms of temperature, we thus
obtain
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This equation, together with (2.3), allows to find¹
#
and R

=for temperature-dependent heat conductivities. Eliminating
R

=
from (2.3) we get the transcendental equation for ¹

#
:
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In the general case, these equations can be easily solved
numerically. In some cases, I in (2.5) can be calculated
analytically. As an example, we consider constant heat
conductivities i

$
, i

'
. Then,
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The latter approximation refers to cases where the second
term in the square root is <1, as it is usually the case in
LCVD experiments. In this region,
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Expressions (2.8) give the general trends for the depend-
ence of ¹

#
and R

=
on experimental parameters and mater-

ial properties. More refined dependences may be obtained
from (2.6) or, especially when transport limitations are
involved, from numerical solutions of (1.3), (1.6) with (1.8).

3 Numerical considerations

The numerical procedure is organized as follows: The
differential equations (1.3a) and (1.6a) are solved together.
The Cauchy problem starting at z"0 requires 3 initial
conditions which are given by (1.3b), (1.6b), and
¹ (z"0)"¹

#
. all of them containing ¹

#
which is yet

unknown. The solution of the Cauchy problem allows to
calculate the temperature far away from the tip of the
fiber, ¹

=
(¹

#
), as a function of ¹

#
. Then, the requirement

¹
=

(¹
#
)"¹

0
allows to find ¹

#
by iterations. In the ab-

sence of transport limitations and for weak dependences
i
$
(¹ ) and i

'
(¹ ), the analytical results (Sect. 2) coincide

with the numerical results within 10—15%.

4 The influence of different parameters

In this section we discuss the influence of the laser power,
laser spot size, the heat conductivities, and possible trans-
port limitations, on ¹

#
and R

=
. It is convenient to intro-

duce the normalized radius R
=

/sw
0

and the normalized
temperature ¹

#
/¹

0
. Then, we find their dependences on

normalized power PA/nsgiw
0
¹

0
, activation energy

¹
!
/¹

0
, and heat conductivity ratio, i*"i

$0
/i

'0
.

4.1 Laser power

An increase in laser power always leads to an increase in
¹

#
and R

=
, as it can be seen from Figs. 2—6. Usually, the

dependence is between square root and linear with the
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Fig. 2. Dependence of normalized radius and normalized temper-
ature on normalized laser power in the kinetically controlled regime
with i*"i

$0
/i

'0
and i"1

temperature increasing much slower than the radius. This
is in agreement with experimental observations.

4.2 Laser spot size

¹
#
decreases and R

=
increases with increasing w

0
, as it can

be seen from the simplified expressions (2.8). The decrease
in ¹

#
is due to smaller intensity near the tip of the fiber.

When the normalized dependence R
=

(P) becomes close to
linear, R

=
becomes less dependent on w

0
, as both nor-

malized radius and normalized power are inversely pro-
portional to w

0
.

4.3 Ambient temperature

With the assumption ¹
#
<¹

0
, ¹

0
does not enter the

expressions for ¹
#

or R
=

. Numerical calculations show
that usually there exists a weak increase in both ¹

#
and

R
=

with ¹
0

because it is easier to achieve higher temper-
atures with the same laser power.

4.4 Activation temperature (energy)

In agreement with (2.8), numerical results show that ¹
#increases with ¹

!
while R

=
decreases (e.g., Fig. 3, solid and

dashed lines). With higher ¹
!
, the effective growth region

becomes shorter (more steep ¼(¹ ) dependence), and

Fig. 3. Changes in radius and temperature distribution along the
fiber for fixed laser power PA/nsgi

'0
w
0
¹

0
"1000 and different

thermal conductivity ratios i*, activation energies ¹
!
, and R

$*&
.

Dotted curve on the lower plot coincides with the dashed one

thereby R
=

decreases. Thus, ¹
#
increases due to the small-

er heat flux along the fiber. The preexponential factor ¼
0in the Arrhenius law influences neither ¹

#
nor R

=
because

only relative changes in the reaction rate are important
(1.3a)). Having in mind that for an ideal gas, i

'
is indepen-

dent of pressure, this is in agreement with the experi-
mental findings [18, 19] that R

=
(P) is almost independent

of the pressure of the precursor and/or buffer gas.

4.5 Thermal conductivities

The dependence of ¹
#
and R

=
on i

$
and i

'
, respectively, is

illustrated by Fig. 2. It is in agreement with approxima-
tion (2.8). ¹

#
increases with decreasing i

$
due to the

diminished heat flux along the fiber. With low powers P,
R

=
increases with i*. This is because with lower ¹

#
, the

region where ¼ (0) and ¼(z) are comparable increases.
(Fig. 3, solid and dashed—dotted curves).

The temperature-dependent heat conductivities have
been described by n

$
, n

'
:

i
$
(¹ )"i

$0
(¹/¹

0
)n$, i

'
(¹ )"i

'0
(¹/¹

0
)n'. (4.1)

Below we present numerical results (Sect. 3) which usually
agree within 10—15% with analytical predictions (2.6).
With Dn

$,'
D'1, the agreement between analytical and

numerical calculations becomes worse.
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Fig. 4. Influence of temperature-dependent thermal conductivities
(characterized by exponents n

$
, n

'
in (4.1)) on the radius and tip

temperature

Fig. 5. Same as Fig. 4, but with finite diffusion, characterized by
R

$*&
/sw

0
"10~6. At high laser powers transport limitations play an

important role. ¹
#
decreases while R

=
increases with respect to the

results in Fig. 4

Fig. 6. Modeling of pyrolytic growth of Si fibers from SiH
4

[18,
19]. The values of parameters employed are i

'
"2.12]10~4]

(¹/300)1.5 W/cmK, i
$
"1.54](¹/300)~1.2 W/cmK [21], A"0.55,

¼
0
"8780 cm/s [18, 19], s"1, g"0.4

¹
#

is mainly influenced by n
$
, and R

=
by n

'
, as ex-

pected from (2.8) (Fig. 4). An increase in n
'

increases the
heat losses to the ambient gas, and thereby makes the
temperature distribution sharper, which diminishes R

=
.

4.6 Transport limitations

Transport limitations in the gas phase, as described by
(1.8b) significantly change the dependences ¹

#
(P) and

R
=

(P) because they diminish relative changes of the reac-
tion rate along the fiber. Correspondingly, the growth
region becomes longer and R

=
increases while ¹

#
de-

creases. The effect of transport limitations is similar to
that of a decrease in activation energy (Fig. 3, dotted and
dashed curves). With temperature-dependent heat con-
ductivities, the influence of diffusion may become parti-
cularly pronounced (Fig. 5). The transport limitations
start when the denominator in (1.8b) is close to two at
¹"¹

#
(Fig. 4). Thus, they occur at higher powers for

higher values of i
$
, i

'
, n

$
, n

'
(bigger heat losses) and ¹

!(smaller reaction rate).

4.7 Ambient gas pressure

Without transport limitations, the gas pressure influences
¹

#
and R

=
only via i

'
. Corresponding changes may be

estimated from (2.6) and/or (2.8).
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If transport limitations become effective, the gas pres-
sure enters R

$*&
in (1.8b) via o

'
, D, and ¼

0
. In the absence

of a buffer gas this leads to R
$*&
J1/p, which slightly

shifts the transport limited region to a smaller P with
increasing p.

5 Growth of Si from SiH
4
#H

2

We shall apply our model to the description of the pyro-
lytic growth of Si fibers from SiH

4
[4, 18, 19]. The para-

meters employed in the calculations are included in Fig. 6.
Changes in laser power from 50 to 800 mW were con-
sidered. The fit is satisfactory, in particular, in the range of
medium laser powers. With very low powers, when R

=becomes comparable with w
0
, the assumption of a 1D

geometry near the tip of the fiber becomes violated, and
the model does not work satisfactory. With high powers it
produces too small values of R

=
and, correspondingly,

too high ¹
#
. This may be related to the fact that real

values of material parameters at elevated temperatures
may differ from those used in the calculations. For
example, the deposit may contain a fraction of polycrys-
talline material with higher thermal conductivity which
will effectively increases i

$
. A fit of comparable quality

and better agreement at high laser powers may be ob-
tained with n

$
"!0.8 and R

$*&
/sw

0
"1.4]10~8. No

data are available for the diffusion coefficient of silane; the
value of o

'
which should be used in (1.8b) is somewhat

arbitrary due to its temperature dependence, and the
shape of the tip of the fiber differs from spherical which
has been assumed in (1.8b). Correspondingly, R

$*&
was

considered as a fitting parameter which varies within
a physically admissible range.

6 Conclusions

The one-dimensional model investigated allows us to
understand many features observed experimentally dur-
ing pyrolytic growth of fibers by laser CVD. The depend-
ences of the fiber radius and the stationary temperature in
the reaction zone on laser power, spot size, activation
temperature, and heat conductivities are studied. The in-
fluence of gas-phase transport is discussed as well.

Simplified analytical formulas are presented together
with numerical calculations. The results have been applied
to the pyrolytic growth of Si fibers from SiH

4
.
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Appendix

¹he heat exchange coefficient g
Far away from the tip of the fiber the temperature distri-
bution within the gas is spherical and is given by

h
'
"AP/4ni

'0
. (A1)

The temperature along the fiber in the region where
its radius remains constant is given by (2.4) which, in
the case of constant heat conductivities (2.7), degenerates
into

h
'
,h

$
"h

#
exp A!

z

l
=
B+

AP

n2gl
=

i
'0

exp A!
z

l
=
B . (A2)

The last equality follows from the energy conservation in
the dissipation region and (1.7).

At a distance r+z+l
=

, (A1) and (A2) should co-
incide. Thus, g+2e~1+0.736.

With temperature-dependent thermal conductivities,
similar estimations may be obtained with g becoming
slightly dependent on laser power and other parameters.
Correspondingly, it may be considered as a fitting para-
meter with g)1.
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