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Abstract 

A self-consistent analytical description of laser direct writing based on a one-dimensional approach is presented. The 
cross section of the stripe has been assumed to be non-uniform; its width and height are calculated as a function of 
processing parameters. With high activation energies, when the height of the stripe becomes comparable with its width, the 
front edge of the stripe may become narrower than the region where the reaction of pyrolytic deposition is localized. This 
leads to nontrivial phenomena such as an interval of scanning velocities where continuous deposition becomes impossible. 

PACS: 42.5; 68; 82.65 
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1. Introduction 

Recently we proposed a one-dimensional model for laser direct writing [I]. In [2] several different 
phenomena, such as non monotonous dependence of width of the stripe on scanning velocity, linear scaling of 
sizes with laser power, oscillations, discontinuous deposition at low scanning velocity, were explained on this 
single basis. 

However, the treatment developed in [1,2] is in certain respects too crude. In this article we present a 
treatment, in which not only the main parameters (height, width) but also the shape of the stripe is determined 
self-consistently on the basis of one-dimensional approach, thus clarifying the meaning of the dimensionless 
parameters, introduced in [1,2]. The main emphasis is placed on the investigation of the influence of the 
geometry near the edge of the stripe on the continuity of the deposition process. 

The experiments performed with Si from SiH, [2,3] and with C from C,H2 and C 2 H 4  [4] show, that with 
low scanning velocity, when the deposit is thick enough, the picture of the deposition process changes 
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I LASER BEAM I 

1 SUBSTRATE K, 

Fig. 1. Schematic of the deposition process. The temperature profile is shown by the dotted line. The stable profile of the height (solid line) 
at small scanning velocities tends to flip over (dashed line) due to the extensive growth which is indicated by the arrows, Tlie length of an 
arrow indicates the growth rate at each point. 

qualitatively: continuous stripe is replaced by a series of spots or even fibers, popping up from the substrate. 
Here we present the model, which provides a geometrical explanation of this effect. The schematic picture of 
the process is shown in Fig. 1. The deposit always grows in the direction perpendicular to its surface. If 
scanning velocity is big enough, the deposited stripe is flat and in the course of growth the front of the deposit 
(solid line) shifts to the right, but its profile h(x) remains unchanged. Clearly, with lower scanning velocity the 
stripe becomes thicker, and the front edge of the stripe becomes more steep. If scanning velocity is low and the 
deposit becomes so thick, that lah/axl= 1, the slope at the edge starts to increase catastrophically, because the 
upper parts of the deposit grow faster than the lower parts (dashed line). This is due to a nontrivial geometrical 
effect, which makes the edge of the stripe even narrower than the distribution of the growth rate. Thus, at low 
scanning velocities continuous deposition becomes impossible. Below we present an analytical treatment of this 
phenomenon. 

2. Basic equations 

The main assumptions in the present model are the same as in [1,2]. We assume the deposition of the good 
heat conductor on a thermal insulator, so that the ratio of the heat conductivities of the deposit and the substrate 
K * = KD/Ks >> 1. This allows to implement one-dimensional approach with x-coordinate directed along the 
stripe. The energy balance for the stripe yields: 

Here we assumed constant heat conductivities, laser beam with absorbed power Pa positioned at x = 0, and its 
diameter to be small in comparison to the width 2 r  of the stripe. T(x) and To are temperatures of the deposit 
and at infinity. y = 2 characterizes heat losses to the substrate and 

12(x)  = F ( x ) K  * / q =  [ h ( x ) r ( x ) K x / y .  ( 2 4  
Here 1 characterizes the drop in laser-induced temperature in x-direction, F, h and r are: cross section, height, 
and half width of the stripe, and c= 1 characterizes the shape of its cross section. Eq. (2.1) is written in a 
coordinate system fixed with the laser beam if the scanning velocity v, does not impose any influence on the 
temperature distribution, which is practically always true for the laser writing of micro structures. Note, that 
unlike in [1,2] we consider that I and F depend on x and write kinetic equation for the h(x). For the steady state 
process in the frame fixed with the laser beam it reads: 
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Here we consider h in the middle of the stripe's cross section where it has the highest value, square root 
accounts for the finite slope of the deposit surface, while W(T) is the growth rate (normal to the surface at each 
point) with the activation temperature T, and preexponential factor k,: 

W(T) = k, exp( - Ta/T) . (2.4) 

Function h(x) should be determined self-consistently from (2.3) with ~ ( x )  taken from (2.1). Resolving (2.3) 
with respect to dh/dx we get: 

We assume the deposition with high activation energy Ta >> T,, and employ Frank-Kamenetsky expansion of 
the rate function near the point of maximum temperature T, ,  achieved at x = 0: 

W(T(x))lx:a= W(T,) e x ~ ( F x / a , ) ,  (2.6a) 

Here and later prime denotes spatial derivative. a ,  characterize the widths of reaction zone to the right and the 
left side of the laser beam. TrlX=,  0 = T,/I, and therefore (2.6) is valid for x = a only if max(a-, a,) << I, 
which is ensured by the high activation temperature T,. Using approximation (2.6a), it is easy to write down the 
solution of (2.5), assuming continuity of h(x) and its derivative at x = 0: 

with 

This profile h(x) together with the definition (2.2) should be used in the heat equation (2.1). Here it is 
convenient to study two cases. 

3. Thin stripes (high scanning velocities) 

In this case dh/dx - h,/a, =K 1 and we can expand arcsin and sin in (2.7). The same result can be obtained 
directly from (2.3) if one omits square root: 
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We should find the temperature distribution and the maximum temperature Tc from the heat equation (2.1) 
with this profile of the height. This is done in the Appendix A. After that the algorithm is the following. We 
consider T, as a parameter and introduce a function: 

I-'+ = I-'+(To) =a+/lo.  (3.2) 

Using (A.16) and (2.6b) we obtain: 

This is a transcendental equation which determines I-'+ as a function of Tc. From (3.2) or (3.3a) it is clear that 
I-'+ << 1 (this is in fact the realm of validity of our approximation). For very small I-'+ we can approximate f( p)  
as (e.g., [8] (9.6.81, (9.6.9)): 

f( P> = -2P2  l n ( 2 ~ ) .  (3.3b) 

When p is known, we find the ratio a- /a+, dividing expressions for a * in (2.6b) and using ( ~ ~ 1 2 )  and (A. 16) 
with zo from (A. 11): 

Note, that 6 depends on I-'+ and a- /a+ also through the index v as it is given by (A.6), but with the realistic 
values of parameters 6 = 1, a- /a+< 1 and (3.4a) can be well approximated as: 

Now we integrate (2.1) near x = 0, take the corresponding derivatives from (A.12) and (A.16), and then use 
(3.4a): 

In order to find the width of the stripe 2 r  we follow the assumption proposed in [I], that r is constant and 
r a a+:  

r = ( a + =  ~I- '+I,  (3.6) 

where lo is given by (3.5) and 5 is dimensionless coefficient with the value near unity. For the height of the 
stripe, from (3.1), (A.2): 

And finally, for the scanning velocity, from (3.lb), (3.6) and (3.7): 

We also write here one formula important for the future. From (3.6)-(3.7): 
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Fig. 2. Function fl p)  as given by (3.3a) for thin stripes (dashed line) and by (4.4) for thick stripes (solid line). T, / T o  = 27.3, 7 = 1.6, 
[=1.33, [=l.O, K *  =20. 

Formulas (3.3)-(3.8) allow to draw the dependences h(v,), r(v,), T(v,) in a parametric form, using p (or T,) 
as a parameter. For the calculations it is convenient to consider p ,  not T,  as a parameter. Then we can find 
T,( p )  from (3.3a): 

and use it in all formulas. Function f( p )  as given by (3.3a) is depicted in Fig. 2 by the dashed curve and 
corresponding T,(p) dependence in Fig. 3, also by the dashed curve. In all pictures ' +'  and ' - '  near the 
curves correspond to the different signs in (3.10). The dependences h(v,), r(v,), T,(v,) are drawn in Fig. 4. In 
spite of the two branches in (3.10), the resulting curve has no peculiarities. The results presented here are quite 
similar to those obtained in [2] for the deposition without threshold. 

4. Thick stripes (low scanning velocities) 

For the sufficiently low scanning velocities, the profile of the stripe is given by (2.7). It is not possible to 
solve analytically heat equation (2.1) with this profile. We can, however, approximate the profile (2.7a) by the 
profile (3.Ia), with different, adjusted values of a+.  We chose a+  so, that the expression (3.la) with a+ will 
give the same asymptotics at 1x1 -t a, and the same slope at x=  0, as the expression (2.7a) with a+-does. 
These conditions are fulfilled if (as it is clear from (2.5), (2.7b) and (3.la)): 

Now we can use the formulas of the previous section and Appendix A, replacing almost everywhere a +  by - 
a,. The significant difference arises, however, with respect to the calculation of p. From the solution 07 the 
heat equation with the new profile of the height, p is defined in accordance with (3.2) as p = Z+/l , .  However, 
the Eq. (3.3a) was written using (2.6b), where even now in the left side we should use a +  -the width of the 
reaction rate distribution, not a +  - which characterizes the width of the deposit. For thick stripes these quantities 
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Fig. 3. Functions T,(p.) as given by (3.10) 
(fl p.1 from (4.4)) with 'low' (T, /To = 25, 

I 

0.1 Pmin 0.2 0.3 

P 

for the thin stripes (fl p)  from (3.3a), T, /To = 27.3, dashed line), and 
dotted line) and 'high' (T, /To = 27.3, solid line) activation energies. 

for the thick stripes 

do not coincide as it was for the thin stripes. (This does not affect (3.4a), where we also used (2.6b), because the 
ratio a-/a+ stays unchanged due to (4.la)). Therefore, (3.3a) should be transformed into: 

The term in the brackets can be calculated as: 

Here we used consecutively (4.lb) and (3.91, in which, of course, Z+ should be taken because this relation 
describes the shape of the deposit. Combining (4.2) and (4.3) we get the equation relating p and T,, which 
replaces (3.3a): 

- '  KO(2') T2 -- "'I =&[xcctg(f K Y - ) ]  K(2iil- <AT 
When p is determined from here, we can use the formulas (3.4)-(3.7) for the parametric dependences, using 
everywhere a* instead of a+. The expression for v, is now slightly different: instead of (3.8) we get from 
(4.lb) and (3.9): 

0.3 b . t . , . ,  .... 3 
thin stripes ,,....' 

Fig. 4. The (dimensionless) dependences h(u,), r(u,) and T,(u,) for the thin stripes. Calculations have used (3.3111, (3.10), (3.4b)-(3.8) with 
the same parameters as in Fig. 1. 
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Fig. 5. The (dimensionless) dependences Idv,), r(v,) and Tc(v,) for the thick stripes and 'low' activation energy. Calculations were done on 
the basis of (4.41, (3.101, (3.4b)-(3.71, (4.5) with Ta / To = 25. Other parameters are the same as for Fig. 2. 

However, there exists a qualitative difference between f( p )  as given by (3.3a) and (4.4). The first one is 
monotonous function of p ,  (Fig. 2, dashed line) starting at zero for p = 0, with asymptotics (3.3b). Thus we 
have one and only one p corresponding to each value of T,. 

f ( p )  from (4.4) is shown in Fig. 2 by the solid line and has the asymptotics: 

\ p +  +a for p += 0. 

Thus this function has a minimum f,, at pmin. Correspondingly, for each value of T,  there exist two values of 
p. Here one can distinguish between the two cases: 'low' activation energies, when the smallest possible value 
of the right side in (4.4) (achieved at T, = 2To and equal to 4To/T,) is above fmi,: 4T,,/T, > fmin and 'high' 
activation energies, given by the opposite condition: 4To/T, < fmin. This is shown in Fig. 2 by the dash-dotted 
lines. Functions T,( p )  for these two cases are shown in Fig. 3 by dotted and solid lines respectively. Parts of the 
plots to the left of pmi, (small values of p )  correspond to the unstable branches which do not appear in the 
experiments. 

In Figs. 5 and 6 the stable branches of the (dimensionless) dependences h(v,), r(v,) and T,(v,) are drawn. In 
the case of 'low' activation energies (Fig. 5 )  the picture is qualitatively the same as for the thin stripes (Fig. 4). 
For the 'high' activation energies (Fig. 6) there exists a region of forbidden scanning velocities, where the 
continuous deposition is not possible. This region within the approximations made does not depend on the laser 

Fig. 6.  The (dimensionless) dependences h(v,), r(v,) and Tc(v,) for the thick stripes and 'high' activation energy. Ta / To = 27.3. Formulas 
and other parameters are the same as for Fig. 5. 
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Fig. 7. Functions ~L,,,(K * ) and fmi,( K * ) as given by (5.1). Geometrical parameters are the same as for Fig. 2. 

power. The left branch often is shifted to the scanning velocities which are so small, that it cannot be observed 
in the experiments. 

5. Disappearance of the stationary solutions. Critical parameters 

The position and the width of the forbidden velocity interval depends on K * and T,. pmin and fmin from Fig. 
2, which determine the boundaries of the forbidden zone depend only on K * and should be determined from 
the condition of zero derivative of (4.4) at p = p,,: 

"I 

The corresponding dependences pmin and fmin on K * are shown in Fig. 7. Both of them can be roughly 
approximated as: 

s C I K * - 1 / 2  
Pmin , f m i n s ~ l ~ * - 1 ' 2 ,  (5.2) 

with the value of c ,  near unity. 
The boundary between 'high' and 'low' activation energies as described at the end of Section 4 is given by 

the condition: 

4T0/T, =fmin.  (5.3) 

Fig. 8. Regions of 'high' and 'low' activation 

0 20 40 

K*=KdK, 

energies as defined by (5.3). Geometrical parameters are the same as for Fig. 2. 
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Fig. 9. The width of the forbidden zone (in T, and v,) as the function of K ' . T, / T o  = 27.3 (along line 1 at Fig. 8). Geometrical parameters 
are the same as for Fig. 2. 

The corresponding plot Ta( K * ) is presented in Fig. 8. Above the boundary there exists the region of forbidden 
scanning velocities, below the boundary continuous deposition is always possible. The region of forbidden 
velocities widens with increasing distance from this boundary. In Fig. 9 it is shown what happens if K * 
changes with Ta fixed (along line 1 in Fig. 8). The solid line represents the lower and the upper values of 
forbidden T,  at p = ,urnin, which can be seen in Figs. 3 and 6 for the 'high' activation energies. The dashed line 
is (minus) logarithm of the corresponding (normalized) scanning velocity. Values of T, and v, between ' + ' and 
' - ' branches of the curves are forbidden. The ' + ' branch of the temperature (which is usually observed in the 
experiments as the lowest possible temperature for the stable deposition) in the broad range can be approxi- 
mated as: 

with the value of c, near two. 
Fig. 10. is analogous to Fig. 9, but with K * fixed and T,  changing (along line 2 in Fig. 8). Figs. 9 and 10 

indicate that the region of forbidden velocities widens with increasing T, or decreasing K *.  
At the critical point, when ,u = prnin, width/height ratio of the stripe is practically constant and depends only 

on geometrical factors. This can be seen from (3.9), which is about the width/height ratio, and from (5.2). 
Thus, there is no hope to produce 'wall-type' structures. The height of the stripe can become only of the order 
of its width, otherwise a continuous deposition breaks off. 

Fig. 10. The width of the forbidden zone (in T, and v,) as the function of T,. K * = 20 (along line 2 at Fig. 8). Geometrical parameters are 
the same as for Fig. 2. 
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6. Influence of finite laser focus 

Up to now we used an assumption that the laser can be considered as a point source (see (2.1)). This 
assumption is often violated for the narrow stripes with the width comparable with the size of laser focus wo. 
Finite w, introduces into the problem new pasameter with the dimension of length and makes the critical v, 
power dependent [2]. To study this effect, we replace the &function in (2.1) by the Gaussian intensity 
distribution (per unit length of the stripe) with the same total power and, using (3.6), rewrite (2.1) as: 

This equation should be solved together with (2.3) or (2.5). Some notes are appropriate here concerning the 
meaning and the definition of the quantity a+ in this equation. It determines the width of the stripe and 
therefore the heat losses via (3.6). Its definition is based on the behavior of the h(x) near the hottest point where 
the fastest growth occurs and which, due to (2.5) coincides with the inflection point of h. When the intensity 
distribution was approximated by the &function, both points are at x = 0. With distributed source term the 
maximum temperature occurs at some x, > 0. We adopted the definition of Z+ as the distance from x, to the 
intersection of x-axis with the tangent to the h(x) drawn at x = x,. 

The system of Eqs. (2.5)-(6.1) was solved numerically by finite differences. The heat equation (6.1) was 
solved using backsubstitution for tridiagonal systems [9]. Then two slightly different techniques were used. In 
the first approach both equations were discretized on the non-uniform grid and h was found by discrete 
integration of stationary equation (2.5). Then h was used for the calculation of the next iteration for the 
temperature according to the iteration procedure: 

Here i denotes the number of iteration and c is some coefficient which had to be sufficiently small to ensure 
convergence. 

In the second approach, the growth equation (2.3) was written in a time-dependent form, i.e. with 
ah/at - v,ah/ax instead of -v,dh/dx on the left side, and the solution at t + w was sought. The grid was 
uniform with the spatial step Ax. The growth equation was split into two terms-advection (scanning) and 
growth. The time step for advection was chosen in the usual way for the upwind schemes [9]: r = Ax/v,, which 
resulted in a shifting of T and h arrays one spatial step to the left at the moments of time t -. r ,  27, .  . . . The 
growth part of (2.3) was solved iteratively by the implicit scheme: 

where the growth rate W at spatial point jAx  is given by: 

Here i and c have the same meaning as before, and At is the time step. Note, that in both cases the temperature 
was recalculated at each step of iteration. 

For the critical values of the laser power and scanning velocity, at which the solution disappears, both 
methods gave the results which agree within 10-15% accuracy. Below we present the results obtained by the 
second method. 

Such poor accuracy is due to the numerical difficulties in determination of the critical values of P and us. 
Numerical solutions always exist, but in some region of parameters they are discretizational artifacts and are 
characterized by several 'unphysical' properties: 

the maximum temperature exceeds the limit imposed by the possessiveness of the square root in (2.5); 
strong dependence of the solution on discretization; 
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Fig. 11. The dependence of critical power on scanning velocity P,,(u,). The values of parameters used: T, / T o  = 40, w, = 1 a.u. ( w ,  was 
used in the normalization of spatial coordinate). Other parameters are the same as for Fig. 2. 

big spatial discrepancy A between the point of maximum temperature and the inflection point of h 
(analytically they should coincide, see (2.5)). 
For the fixed value of v,, in the vicinity of the critical power PC,, this discrepancy behaved like 

A a ( P  - P,,)''~ and this was used for the determination of PC,. The accuracy of this definition was about 10% 
with respect to different discretizations. 

In Fig. 11 the dependence of PC, on scanning velocity is presented. The critical value of v,/k, in the 
&function approximation can be estimated from Fig. 10 (' + ' branch) and for these parameters is about e-8.5. 
One can see that the velocities which were forbidden in the point source approximation are allowed for a finite 
beam. The lowest possible velocity (with arbitrary powers) seems to be equal or close to k,. This change with 
respect to the Section 5 (Figs. 9 and 10 ' + '  branch) is probably related to a much smoother profile of the 
temperature near the hottest point for the distributed source. Another difference introduced by the finite w, is 
that the slope of the front edge of the stripe in the moment when the solution ceases to exist is much higher than 
in the &function approximation. The height itself remains finite. 

The behavior of Pc,(v,) curve agrees qualitatively with the experimental dependences [2,31. However, the 
quantitative description should include the temperature variations within the stripe [Z] and more accurate 
description of the heat losses. The latter can be done either on the basis of the extensive numerical 
three-dimensional simulations, like those performed in [lo], or on the basis of the (improved) two-dimensional 
model proposed in [Ill .  The last way is the goal of our forthcoming work. 

7. Conclusions 

When the finite slope at the edge of the stripe deposited via laser direct writing is taken into account within 
the frame of one-dimensional model [1,2], the width of the front edge of the deposit is even smaller than the 
width of the reaction rate distribution. For that reason, if the activation energy for the deposition is high enough, 
in some interval of the scanning velocities continuous deposition can become impossible. 

The dependence of this interval on the material parameters such as the deposit/substrate thermal conductiv- 
ity ratio and the activation energy was investigated. The region of forbidden velocities widens with increasing T, 
or decreasing K " .  When laser focus is comparable with the width of the stripe, the upper boundary of this 
interval (the lowest possible scanning velocity) increases monotonously with increasing laser power. 
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Appendix A. The solutions of the heat equation with the exponential height profile 

As it is clear from (2.2) and (3.0, we should solve the heat equation (2.1) with 12(x) given by: 

where 

We will solve this problem for x < 0 and x > 0 separately. 

In order to get rid of the exponentials in (2.1) with 12(x) from (A.1) we make a substitution: 

y =  a e x p ( p x ) .  (44.3) 

Then (counting T from To), we get: 

In order to give (A.4) the form of the hypergeometric equation we set: 

- l  (Y=1m2/1:, p =  - a _ ,  

thus obtaining 

This hypergeometric equation has one formal solution F1(v, - V, 0, y), which is inconvenient, because the 
third argument is equal to zero. We transform (A.6) to a variable y, = 1 - y and get the solution in a form 

FI(v, - V, 1, yl), which can be expressed ([5] (7.3.1.52)) in terms of the associated Legendre functions of the 
first kind of the argument: 

z = 1 - 2 y i = 2 y - 1 ,  (A.7) 

z is the most convenient variable for our purposes. Therefore we rewrite (A.6) for z variable: 

and check explicitly, that the functions 2 , (z )  = Pv( z) 4- Pv- ,(z), C2(z) = Q,< Z) 4- Q,- ,<z), with P and Q 
being Legendre functions of the first and the second kind, are the independent solutions of ( ~ ~ 8 ) .  It can be done 
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in the following way: we write down and add the Legendre equations for v and v- 1 and extract the terms 
corresponding to (A.8). For example, for 2,: 

Using differentiation formulas for the Legendre functions ([5] (II.18)), 

we verify, that the second brackets in (A.9) are identically equal zero. The same is true for 2, with P,, and 
Pv- ,. Thus 2, and 2, are the independent solutions of (A.8). We need a particular solution, which satisfies the 
boundary condition T( x = - a )  + 0, i.e. T( y = + a )  = T( z = + a )  + 0. For z + w we have: Pv( z) a zv, 
while Q, + 0 (see e.g., [6] (5.3.25) and (5.3.30)). Therefore, our particular solution is 2,. Finally, introducing 
temperature T, at x = 0 and adding To we obtain for x < 0: 

T (x )  = To+AT, [ Q ~ ( z ( x ) )  + Q V - 1 ( d x ) )  , AT,=T,-To, 
Q,( zo) + Qv- I( zo) 

zo = z(0) = 21,2/1: - 1 = 1 + 2a+/a- ,  (A.l l )  

zo is derived from (A.3), (A.5), ( ~ . 7 ) .  We will need the derivative of ~ ( x )  near zero. Using ( ~ . 1 0 )  and ( ~ . 2 ) ,  
(A.6) for lo ,  I,, I, and v we obtain from (A.11): 

Here we introduced the notation 0 for the expression in the square brackets. 

As in the previous case, in order to get rid of exponentials, we introduce 

y = a exp( p x )  with p = a;', a = a:/1: 

That gives: 

This equation belongs to the class of the generalized Bessel equations (e.g., [7] 31.8.30) and its solution should 
be sought in this case in the form: 

T a y ' / 2 ~ +  - I (+2iY ' /2) r  (A.14) 

with Z a cylindrical function. We have to choose the solution which vanishes at x = + a ,  i.e., at y = +a. 

Therefore, T a y ' / 2 ~ , ( 2 y ' / 2 )  where K,  is the modified Bessel function (McDonald function) of the first order. 
Finally, for x > 0, 

T ( x )  = To + AT, exp(x/2a+) 
K,[(2a+/lo) exp( x/2a+)l  

K,[2a+/lol 
, 

dT AT, KoE2a+/lol 
- I x =  + o  = - - 
d x  10 K1[2a+/loI ' 
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