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microprocessing: A fast algorithm
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We present a fast algorithm for calculations of the temperature distributions induced by the energy
beam in the three-dimensional deposits of arbitrary shape. It combines analytical approximations,
numerical fast Fourier transform, and the multigrid technique. The accuracy of the method is
demonstrated with problems that can be solved analytically. The behavior of the center temperature
in laser-deposited spots and stripes of different shapes and sizes is studied. The results can explain
explosive growth in laser-induced deposition and instabilities in laser direct writing, and provide a
tool for a quantitative analysis of energy beam microprocessing19@6 American Institute of
Physics[S0021-8976)08614-9

I. INTRODUCTION quantitative description &vo-dimensional2D) approach’
. 13 for thermally thindeposits is more promising. However, in
Microprocessing™ by means of laser and electron many processing situations the assumption of thermally thin

beams becomes an increasingly versatile tool in microeleGsatterns is violated. Moreover, for some effects temperature

tronics, micromachining, and micromechanics. The knowl,jationswithin depositsare crucial. Besides, the computa-

edge of the beam-induced temperature distribution is a pPrejona) algorithm used in Ref. 23, although by far superior to
requisite for the understanding of kinetics of the underlyinge girect finite differences or finite element solution of a 3D

pyrolytic processes. Experimental measurements of the temypiem was still rather slow for extensive simulations and
perature are difficult mainly because of the small area of the,, analysis of experimental results.

processed zone, changes in its geometry, and the necessity to

perform it without direct contadtsee e.g., revielvand ref- e thermally thick deposits, derive the equations which
erences therejn For these reasons, calculated temperaturgan pe ysed to calculate the temperature distribution with
distributions are often quite useful. Here, one can d'St'ngu'S'&rbitrary accuracy, and study in detail the approximation

between the two cases. which suffices for many practical purposes. The numerical

In some processes, the change in the geometry of thgaihod combines fast Fourier transfot®FT) for calculat-
specimen is easily incorporated in computational algorlthming 2D convolutions, and the multigrid method of solution

The examples are the doping of plane surfaces or the depgs, the 2D elliptical equation with non-constant coefficients.
sition of homogeneoudilms. In such cases analytical and

numerical solutiors ® can be applied, some of them include
multilayer structured? different shapes of the energy
beam?' temperature dependent material parameters, melting, We consider the situation schematically shown in Fig. 1.
etc. The deposit with thermal conductivit{(T) occupies the
In other applications, the geometry within the processedegion 0<z<h(x,y) on a semi-infinite substrate with ther-
zone changes dramatically. Examples are drilling, cuttingmal conductivityK¢(T). The incident energy beam can be
etching and deposition of patterns with high aspect ratiosabsorbed within both the deposit and the substrate. We as-
e.g., in three-dimension&BD) fabrication of devices in mi- sume that the temperature distributi®(x,y,z) can be de-
croelectronics or micromechanits*? termined from the stationary heat equation. This is a good
Temperature calculations for such systems were perapproximation inmicroprocessing where typical heat veloci-
formed numerically;** often by assuming a fixed geometry. ties are much greater than characteristic scanning velocities
This does not allow to model deposition or etching. In Refs.of the energy beam or the growth or etch rate.
18,19 the temporal behavior of the deposition proosas The heat conductivities can depend on temperature in an
simulated and some non-trivial shapes like valleys in thearbitrary way. This is handled via the Kirchhoff transforms
center of deposit&ue to decrease of the deposition rate withfor substrate and deposit. Kirchhoff transform with respect to
temperaturewere reproduced. This procedure, however, reK(T) is given by:
quires the use of supercomputers. In Ref. 20 we proposed a T
one-dimensiona(1D) analytical model for laser direct writ- o(T)= K(T")dT'.
ing, which permits also to describe oscillations and discon- K(To) J1o
tinuous depositiofi--** This approach proved to be suitable |; makesstationary heat conduction equaticinear®” with
for a qualitative explana_tion of _experimental results, but it respect tdinearized temperaturd. Here T, is the ambient
does not always providguantitative agreements. For a (emperaturelnverseKirchhoff transform yieldsT(6) depen-
dence. With these assumptions the thermal problem can be
3E|ectronic mail: nikita.arnold@jk.uni-linz.ac.at written as:

In this article we generalize the approach of Ref. 23 to

Il. MODEL
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tures and the normal derivatived all the interfacesThis

Z | energy beam system is 2D and it igxact but its integrals do not have the
R w, form of convolutions, as the integrals presented in Sec. lll.
> This does not allow to use FFT methods for their calcula-

n tions, which dramatically slows down the numerical algo-
deposit z=h(xX,y) rithm.
K / 6,"(n Below we adopt different approach, based on averaging
b 6p, A D d
6,°(0) procedure.
\
-
ZubstrateQ Lso(,) X 1. ANALYTICAL CONSIDERATION
6
s b5, Ys . - .
Solving Eq.(2.1b within the substrateusing Green's

function techniqu® we have forz=0:
FIG. 1. Schematic picture of a 2D model for the temperature calculations.

y-axis is perpendicular to the plane of the figure. The surface of the deposit 0 ,
is atz=h(x,y). n is the normal to this surface amds 2D radius vector in 0= 05(x,y,0) = Z[ Os* F}
(x,y)-plane.
1 (0 (= (= Qgr',z)dz'd?r’
+EJ4@J7@ (= ez’ (3.1
7 0p 2 Here, 62 denotes the linearized temperature of the substrate
KD( 2z TV HD) +Qp=0, @13 z=0,S 65 the derivative with respect ta at z=0, {*}
denotes the 2D convolution integralandr’ are the radius
KsV30s+Qs=0, (21D vectors in &y) and (',y') planes, andr,r’ are their
lengths. The last integral in E@3.1) is often either absent
‘;ﬂ =NV36p|niey =[1+(Vh)2] 712 (transparent sub;trate or everything is absorbed yvithin the
N —hixy) deposij, or the integration ovez’ can be approximated
90 and/or performed analytically, so that the remaining integral
X —D—Vh~V¢9D> =0, (2.29 has the form of 2D convolutionds in Eg. (3.1) should be
Jz 2=h(x.y) derived from the heat conduction equation for the deposit.
Now we perform certain averaging. We multiply Eq.
05—~ o= 0] [y| = =0, (2.2b (2.19 by an arbitrary functiorf(z) and integrate the result
965 964 overdzfrom z=Q toz= h(x,y)éh(r), which we henceforth
Kb —7| =Kso , (2.29 denote as. We integrate the first term by parts and use the
z=0 z=0 boundary conditions Egs(2.28 and (2.29 to eliminate
T(6p],-0)=T(8d,_0). (2.20) z-derivatives az=0, h: h
Here, 6 and 6 refer to the deposit and substrate respec-  Kpf(h)Vh-Vép|,——Ksf(0) 65+ Kp —f f'opdz
tively andKs=K(T,),Kp=Kp(T,) are constantVs is 3D 0
Laplacian andV? and V are 2D Laplacian and 2D nabla h h
operator. The derivative with respectaevas extracted from + jo fV20pdz|+ fo fQpdz=0. (3.2

VZin Eq. (2.1a in order to perform averaging later in Sec.
. Qp andQg are(volume source termgd-dependent if the Here,f’, 65, denotez-derivatives. The first term in Ed3.2)
optical properties of the materials depend on temperatare and the second term in square brackets can be combined, and
is the unit (outward normal to the surface of the deposit we can substitute:

(Fig. 1: Oo(x.y.2) = 03(x.y)+ 65(x.y.2), 65(x.y.0)=0.

oh  oh
_ _ 27-1/2( _ .
n=(ny,ny,n,)=[1+(Vh)] ( X ay,l).

(3.3
Here 69 is the temperature of the deposit at the interface

(2.3 z=0. This yields:
In Eqg. (2.28 we neglect heat losses from the upper surface. , h h o
Equation(2.29 reflects the continuity of the heat flux across ~ Ksf(0)fs= J; fQpdz+KpV ( fo fdz) Viop
the interface, and Ed2.2d the continuity of the tempera-
ture. h h 4

It is attractive to reduce 3D system in E¢8.1)—(2.2) to V( fo fVGDdz) B fo f"op'dz.
a set of 2D equations which allow to calculate tfieear-
ized temperature at thesurface of the deposit 3.4
61(x,y)= 6p(x,y,z=h(x,y)). One way is to write Green’s Equation(3.4) is exactand valid for arbitrary functiori(z).
formule?® for the deposit and substrate. This approach givest is possible to expanddy in Eq. (3.3 in a series of
a system of integro-differential equations for the temperaz-dependent function§;(z), substitute it into Eq(3.4) and

+Kp
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perform averaging over with each of these function§;
used as a weight functiohin Eq. (3.4). This results in an
(infinite) set of equations for thex(y) dependent coeffi-
cients in this expansion, which approximadg with arbi-
trary precision.

We will usefg, f; which arise from thdirst two terms
of the Taylor expansion of, in z-coordinate. The resulting

pair of equations has a clear physical meaning and, as it is

shown in Sec. IV, it provides a good approximation to the

whole problem for a wide range of parameters. Namely, we

assume:
Op(X.y,2)=6p(x.y) + 05(x,y,2) = o(2) 63(X,Y)
+f1(2) 61(X,y), (3.5
fo(2)=1, (3.69
fi(z)=z. (3.6b

Equation(3.4) written for f=f, andf=f, gives two Galer-
kin (or variationa) equation&®?’ for the trial solution(3.5):

|

(3.79

h2
& Vo

h
KSQ’S:f Qpdz+KpV(hV63)+KpV
0

2

h 3
7vag

h
Vé’l =h91

+V ?
(3.7b

h
Kglf zQpdz+V
0

The physical meaning of these equations can be illustrated as

follows. With h—0 we can neglect the last term in Eq.

(3.7a. The resulting equation is the energy balance within

the thermally thin deposit. The second term in the right sid
represents the lateral “spreading” of the surface temperatur
due to the presence of the depdSitThe last term in Eq.
(3.73 gives further correction to the approximation of a thin
deposit.

In order to elucidate the meaning of E®.7b), let us
again consideh— 0, and assume th& is absorbed on the
upper surface of the depogith. Then, Eq.(3.7b degener-
ates intoKp 6;=1,, wherel , is the total absorbed intensity.
But from Egs.(3.5 and (3.6), 6, is just z-derivative of the
temperature, and thus, E@3.7b is the condition of flux
conservation. Note, that the right side of E.7b is the
temperature difference within the depogii— 62 .

In the general case, EqR.7) are coupled$,; should be
found from EQq.(3.7b and substituted into Eq3.7@ which
yields #5. Then, 65 should be inserted into E¢3.1). 62 in
Eq. (3.1) should be considered as the functiona3f:

62=0%63)=T5 [ To(63)]. (3.8

Here, Tp(62) is given by theinverseKirchhoff transform
with respect todeposit and Ts? is direct Kirchhoff trans-
form with respect to theubstrate Equation(3.8) is the con-
dition (2.2d of temperature continuity, rewritten in terms of
6 and .22 Thus, Eq.(3.1) becomes nonlinear integrodif-
ferential equation for the determination é% . Once 63 has
been found,6; and 4 can be determined from Eqg3.7b
and 3.9 with z=h (see Eq(4.2).
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IV. NUMERICAL PROCEDURE

Let us enumerate the advantages of the system of Egs.
(3.9, (3.7, (3.9.
(i)
(it)

It is 2D instead of 3D in the initial problem.
Integrations in Eqs(3.1) and(3.7) are confined to the
regions whereQ or h are non-zero, although them-
peratureat the boundaries of this region is still much
higher thanT,. Thus, no boundary conditions férat
infinity should be considered in theumerical algo-
rithm. This leads to a big decrease in the size of the
discretized region.

No boundary conditions of the type of Eq&.209 or
(2.29 on the non-planar surface should be considered.
This is particularly advantageous for problems where
h changes with time.

The form of Egs(3.7b and(3.1) allows to use such
methods as multigrid and FF*# which speed up the
calculation by about twearders of magnitude.

Even with arbitrary dependence&(T),Kg(T) the
algorithm remains essentially linear.

(iii)

(iv)

(v)

The sequence of steps in the numerical solution is the
following. Equation(3.1) is solved iteratively with respect to
62 . Symbolically it can be written as:

1 1
0%,i+1: 0%,i+c z( g( 9g,i191( Hg,i))*F]

+1 0363 )1- 6262 ) (4.2)

Here, index denotes the number of iteration, and differént

are functions(arrays in numerical realizatipnThe expres-

Sion in outer square brackets is E§.1). | s denotes the last
integral in Eqg.(3.1). c is constant coefficient introduced to
ensure convergence. The functié§( 62 ,6;) is defined ex-
plicitly by Eq. (3.7a. The functiond,(62) is implicitly de-
fined by Eq.(3.70. In order to findé, from 63, the elliptic
problem of Eq.(3.7b is solved by multigrid technique. The
function 62(62) is given by Eq.(3.8). The convolutions are
calculated by FFT method. Obviously, some of the functions
in Eq. (4.1 depend on the array of heightvia Eq. (3.7).
After 93 and 6, have been found, the temperature at the
surface of the deposit can be written by inverse Kirchhoff
transform of% which is given by Eq(3.5) with z=h

T|,=n=To(6p)=To(65+hoy). 4.2
This formula should also be used in E@.1) during the
calculation if, for example, the absorptivity of the deposit
depends on surface temperature.

There exist some subtleties in the numerical procedure
which we briefly outline below.

The convolution integral in Eq4.1) has a singularity at
r =0 which makes it sensitive to the choice of the mesh. One
mesh point was placed at=0 with ther ~! value given by
the integration over the rectangle0.5Xdx<x<0.5xdx,
—0.5Xdy<y<0.5xdy, where dx and dy are the spatial
steps:

N. Arnold 1293



d dy| ¥ Ks min(dx,d
dx dx| 2|12 Coefficient c;~1 arises from the approximations made,
Fdx T dy + 1+(@ ) (4.3 omitted terms in Eq4.4), and should be determined numeri-

cally. hpa is the maximum value of height. The value of
FFT works only on a uniform mesh. Thudx,dy c=1, provides the fastest possible convergenceHer0,

= const., which can be considered as a disadvantage of odlthough the scheme is stable upas 2. With smallc the

method. Nevertheless, the decrease in computational timgonvergence is slow, thereforeshould be taken as big as

provided by the FFT an multigrid routines pays off this limi- possible, using Eq4.5) as an estimation.

tation. In Eq.(4.1) two functions are convoluted-r 1, The program was written in FORTRAN. With typical

which has infinite support, ands, which, as it can be seen valuesK ¢/Kp~1, dx/h,,~0.1, the calculations up to 10

from Eq. (3.7), is equal to zero outside the regions whereaccuracy on 6464 grid required fren 1 s toabout 1 min on
intensity and height have non-zero values. This is exactly thghe Pentium 90 CPU.

region where we want to calculate the temperature distribu-
tion. In order not to spoil the result of convolution by edgeV' VALIDATION OF THE APPROXIMATIONS AND

effects, one has to consider the region twice as big,jn ALGORITHM

coordinates. The functiofis should be padded with zeros in ~ The program was tested on the problem with the analyti-
this region, and stored in wrap around oréfewhereas ~* cal solution—the case afniform heighth and fixed ratio of
should be calculated in a normal way. heat conductivities K*=K(T)/Kg(T) which leads to

The FFT works efficiently when the number of mesh #3=6b in Eq. (3.8). Here we present the solutions for the
points in one coordinate il=2". The multigrid methotf center (linearized temperature at the upper surface of the
works best ifN=2"+1. To satisfy both requirements, the deposit 65(0)=60p(r=0). We assume Gaussian beam
grid was extended one point for each coordinate when Ed(f)=lo exp(—r?/wg) with spot sizew,, and surface absorp-
(3.7b was solved to determing, . tivity A. More g_ene_ral solutlon_s are given in Ref. 8. For the

The coefficient in Eq. (4.1) ensures convergence of the Surfaceabsorption in thedeposit
iterations. Ifc is not small enough, instability arises, which is h
analogous to that of the explicit schemes in parabolic time- aD(O)KS: Ef —K2i4
dependent equations: The most “dangerous” region for the Algwo  2Jo

discretization (4.1) of Egs. (31.1) and (3.7) is the area ch(khiwg) + K* ~sh(kh/wy)

dS~dx dynearr =0, wherer ~'~max@dx ',dy~ '), andh . dk (5.13
is a slowly varying function. The discretization of the second ch(kh/wp) +K* sh(kh/wy)
derivatives in Eq(37a and substitution OP’S into Eqg. (41) for Surfaceabsorption in thesubstrate
can be schematically written as:
. . 0(0)Ks 1(= ., dk
0Di+1_0Di 1 KD hdS Al o € *
, i~ Db 240 Algwg  2Jo ch(kh/wg) + K*sh(kh/wg)

c 27 Kg min(dx,dy) ' (5.1b
Applying Courant stability criterioff to Eq.(4.4), we get the  and for the Bouger absorption with the absorption coefficient
restriction onc: a within the deposit only:

oN(0)Kg 1 2 @ ch(khiwg) + K* ~1sh(kh/wg) k uh

N EL «?—K2| ch(Khiwg) + K*shikiiwg) |+ | @ SNKN/Wo)+ch(kh/wo) &
k k
+K*1<sh(khlwo)+z e“h—K*lz}dk. (5.19
The source terms in E@3.7) for these cases are given by

) Al(r) ) Al(r)h (5.2a
f Qodz=| Al(r) , f 20pdz=| 0 (5.2b)
° Al(r)(1—e e 7° Al(Dh[1—(ah) L(1+e" )], (5.20
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TABLE I. The comparison between the analyti¢gh. (5.1)) and numericalEgs.(3.1) and(3.7)) solutions forh=const. The numbers show the normalized
center temperature rise at the surface of the depgid)K ¢/l AW, for different values oK*=K/Kg andh/w.

0.01 0.1 0.3 1
h/wg

K* absorption analyt. numer. analyt. numer. analyt. numer. analyt. numer.
0.1 surfacez=0 0.9850 0.9758 1.8469 1.8383 3.4600 3.4440 6.2214 5.8026
surfacez=h 0.8851 0.8759 0.8681 0.8592 0.7973 0.7877 0.5291 0.4827
Bouger,ah=3 0.9093 0.8972 1.4907 1.4529 2.5272 2.4753 3.7674 3.9170
1 surfacez=0 0.8862 0.8772 0.8862 0.8789 0.8862 0.8762 0.8862 0.8358
surfacez=h 0.8763 0.8673 0.7945 0.7870 0.6510 0.6415 0.3789 0.3499
Bouger,ah=3 0.8394 0.8305 0.8165 0.8076 0.7700 0.7621 0.6350 0.6363
10 surfacez=0 0.8016 0.7943 0.4871 0.4852 0.3019 0.2989 0.1693 0.1575
surfacez=h 0.8007 0.7934 0.4801 0.4781 0.2845 0.2815 0.1269 0.1158
Bouger,ah=3 0.7615 0.7545 0.4605 0.4589 0.2804 0.2788 0.1412 0.1371

In Table | we present the values 6§(0)KJ/Alow, for  in the deposit withA=const, andd2= 63 in Eq. (3.8) as in
differentK* andh/w, for three types of absorption given by Sec. V. First, we consider the spots of the generalized para-
Eq. (5.1). For eachh/wy ratio the left column shows the bolic shapesee also inset in Fig.)5
analytical solutiong5.1), and the right one the numerical ho(1— (r/R)2™)
result. Three rows for each value Kf refer to the cases a, h(r)= 0 '

b, ¢ in Egs.(5.1) and (5.2). With thermally thin deposits 0, r>R
and/or moderate ratid¥'w, the results are indistinguishable. y—1/2 corresponds to a cons=1 to a paraboloidms>1

Figure 2 shows the analytical solution and the approxiyg g nearly cylindrical spot.
mate values ofp(r) and fp(r) for hiwe=1, K*=1. There In Fig. 3 we show the influence of the shape of the
is a good agreement for all Similar behavior is observed geposit determined by the parameteon 6%(r) and 83(r).
for other values oh/wg,K*, with the accuracy illustrated in - The influence is weak withk* =10, and increases ft* =1.
Table I. _ _ The dependence demperature Ton shape may be more

One more note is appropriate here. The assum8@  pronounced when linearized temperatdfe is recalculated
is better fulfilled for the spatiallyconfined deposits than  jnto T via inverse Kirchhoff transforrT(8p), if Tp(6p) is
h=const where the heat may spread wider within the deposil strongly increasing function. This is the case for semicon-

Correspondingly, the accuracy of the algorithm is better forductors, which heat conductiviti(T) strongly decreases
the confined deposits. with T.2°

r<R
. (6.1

VI. EXAMPLE: TEMPERATURE DISTRIBUTIONS IN
THE SPOTS AND STRIPES

As a nontrivial application of the algorithm we consider 0 1 2
deposited spots and stripes irradiated by the Gaussian beam
I(r)=1, exp(—r?/wj3). To emphasize the essential features
of temperature distributions, we assugrfaceabsorption

g«:>
3
(7] -
o
i 1.0 ® e
. T 5
S,) ___— analytical solution IEI.:J E
X /\ =~ -] [
Q = =
) h < <
6p %
% 0.5} numerical solution %
)
E =
[H]
o . A
E 0 1 2
k0 1 2 RADIUS i,

RADIUS r/w,,

FIG. 3. The influence of the shape of the spot on the temperature distribu-

FIG. 2. Normalized distributiorf(r) for constant heighh(r)=1, K*=1
and surface absorption in the deposit. Solid line—analytical solfdrg.
Dashed line—numerical result faify(r). w, is the radius of(Gaussiahn
beam.

J. Appl. Phys., Vol. 80, No. 3, 1 August 1996

tions O8(r),63(r). Solid lines—paraboloid spotn{=1), dashed lines—
nearly cylindrical spotfi=4), dotted lines—conen(=0.5). Normalized
intensity is plotted by dash-dotted line. For all cuniav,=2, hy/wy=3
and surface absorption within the depdéit. (5.29) have been employed.
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\0 | ~* k=10 3)
o Pt
5:0 4 sl
AN 34 040 i ’
(7] 7z
¥Q 2150 _,4’_/—”’/‘
T .60,4’—///‘
1 070/,/;/’//:3
| 0.8 ¢90—"10——"1.1
~95'(0) =10
O 4 - 0
R
HEIGHT h/w,, 2, 0
% /
FIG. 4. The dependence of tifeormalized centertemperature rise at the a 2t 1§ /
surface of the deposi#t}(0) (solid lineg, and center temperature rise at the < / 2'20//
i S ) : x L L0 < 3035 —
substrate-deposit interfac#)(0) (dashed lines on the normalized center 1 | / :/4‘0:/4‘5/

height ho/w,. The deposit is a paraboloid span€& 1l in Eq. (6.1)) with -
fixed radius R/wy,=2. The heat conductivity ratios employed are K*=0.1 ¢
K*=Kp/Kg=10,1,0.1.

N W b

It is illustrative to follow the behavior of the central 5 1
temperature ris@f(0) with increasing heighh, when the 50 ¢
radius R is kept constant. The normalized dependences of 1 I //215/’/%,/5’
61(0), andcenter temperature at the substrate-deposit inter- 0 1 2 3 4 5
face 63(0) onh, are presented in Fig. 4 fdR/wo=2 and CENTER HEIGHT hw,
different values oK*. In all casegnormalized #3(0) and

0 12__ ;
05(0) start from the .V(’.ilue 048"°~0.88 which correqunds FIG. 5. The center temperature rise at the surface of the deposit
to the plane semi-infinite substrateee e.g., E(5.18 with  ¢n0)k 1 ,Aw, as the function of the heighty/w, and radiusR/wy for the
h=0). With increasind,, there is a homogenization of the paraboloidspotsfor differentk*. The geometry of the spot and the meaning
temperature within the plane=0. As a result, gg ap- of R, hy are illustrated in the inset. Surface absorption within the deposit.

S P - - Dashed line shows the position of theinimumin 6%(0)[h,] dependence

proachesollmltlng valug. The limiting \_/alue f@ (which is (see Fig. 3 folK* —10) for different values oR.
equal todp in this sectiof can be derived from the energy
balance, corresponding to the uniform temperatuvithin
the deposir <R at z=0.

nite substratedf (0) increases witih, and decreases wifR,

0OKs  mw, because of the changes in the solid angle into which the heat
Aw.~ R (6.2  can dissipate. WithK*>1, 1 (0) alwayshas a minimum as
oo a function ofh,. The dashed line shows the position of this
HereP is the total absorbed power. The value@$f(0) for  minimum for different values oR.
K*=1 is much higher thar$3(0), due to thetemperature The example of aelf-consistentalculation, which takes
gradients within the deposit, which deliver the absorbed eninto account the growth of the spot is presented in Fig. 6.
ergy from z=h to z=0. With high values ofhy, 6%(0)  Here, the profile of height changes with time due to the
increases linearly witing. deposition(normal to the surface at each poiaccording to
) For moderate values dii; with R/wy>1 andK*>1, the Arrhenius kinetics:
05(0) establishes as a result of two competing facttats:
eral spreading of the heat flux through the good conducting W(T)=Wo exp(=Ta/T). 6.3
deposit which tends to decreagB(0), and theincreasing Details of the numerical procedure will be presented else-
temperature difference between the surface of the deposithere. Parameters, used in calculations are listed in figure
and deposit-surface interface which tends to incre®€).  caption. They are close to values, corresponding to the pyro-
At small values oh,, the first factor prevails, while later the lytic deposition of Si from Sitf*%3!or C from CH, and
second factor is more important, a#(0) increases. Cor- C,H, on quartzt3! Figure 6 demonstrates the transition to an
respondingly, there exists a value b§/w, where 61(0) explosive growth regime, i.e., the formation of a fiber. Ini-
reaches its minimum. This value dependskoh as well as tially, center temperature decreases, due to better lateral heat
on R/w, which can be seen from the Fig. 5a, dashed line. conduction within the deposit, and later increases, due to

In Fig. 5 we present the results of calculations of theincrease in height and build up of the temperature difference
normalized center temperature rise at the surface of the devithin the deposit ire-direction. The radius of the spabot
posit A1 (0)K</1,Aw, as the function of both the height shown saturates in the initial stage of growth at a value
ho/w, and radiusR/w,. We considered paraboloidpots R/wg~1.24 for lower intensity * =5, and atR/wy~1.3 for
(Eq. (6.1) with m=1), and three values &f*. With K*<1, I*=6. Qualitatively,T(0) starts to increase, when during the
61(0) is always higher than the value 0.88 for the semiinfi-growth, the spot enters the region to the right side of the

P=7wW3Alo=4Ks02R=
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FIG. 6. The time-dependent behavior of the center heig@) (solid curve
and center temperatufig0) (dashed curveduring the pyrolytic deposition
of spots with kinetics of Eq6.3), for two different laser intensitiepowers
1*=1,Awy/KsTy=5,6. The parameters employed arely/Ks=10,

T, /To=70. With T;=300 K, wy=10 um, Ks=0.03 W/cm K(fused SiQ at
elevated temperatures, see Ref), 38,=10" cm/s,A=0.5, this corresponds
to RT,=41.8 kcal/mol, laser powdP =283 and 340 mW, and one unit of
dimensionless time is equal to 10s. These values are typical for the
pyrolytic deposition of Si from Siklon quartz substrates, see Refs. 1 and
31.

RADIUS R,

0 1 2 3 4 5
dashed line in Fig. 5a. In other words, if the temperature CENTER HEIGHT h/w,

starts to increase during the growth process, the growth rate

increases as well. This leads to a further increase in heigHfC: 7- The same as Fig. 5, but for the parabstitpes(m=1 in Eq. (6.4).

. . . e geometry of the stripe and the meanindRolfiy are shown in the inset.
which further increases temperature. This feedback 100p r&saghed line shows the position of theaximumin 65(0)[h,] dependence
sults in the formation of a growing fiber. For higher laser for different values oR.
intensity 1, (or power P) the timet, to reach explosive
growth regime is much shorténote, that the difference in regime. Ifty(vs)>t.(P), the fiber grows towards the laser
laser powers is only 20%lf the power is increased twofold, beam instead. Thus the condition of stripe to fiber
t, decreases $10? times. This is due to the high activation transitiorf**° depends on both andP.
energy employed. In case of scanning with veloaity this Figure 7 is similar to Fig. 5, but for the parabolion(
time should be compared with the dwell tigeof the beam. =1) stripes with the shape given bysee also inset in the
If ty(vs) <to(P), the deposition proceeds in a direct writing Fig. 7):

ho(1—(y/R)®™), y<R «<—R
h(r)= 0, y>R’ (6.4
max 0, ho(1—(y/R)?™—((x—R)/2R)*™], x>-—R.

Herex is the direction along the stripe. Expressi@¥) de-  stability in this transition with respect to laser power and

scribes the profile of stripes, observed in the experiments oscanning velocity, observed experimentaif}:*° Here the

laser direct writing The height of the stripe reaches station- stripe-fiber transition occurred at different values of laser

ary valueh, at a distancex=—R behindthe laser beam power, depending on whether power was gradually increased

positioned at =0. For thestripesthe position of maximum or decreased. Witincreasinglaser power the fiber starts to

in temperature deviates slightly from the center of lasemgrow from the continuousstripe With decreasingpower

beam. However, this deviation is small, and we still consid-from the fiber-growth regime, the growth stops. Then, laser

ered GB(rZO). beam reaches the substrate and new fiber starts to grow from
Figure 7a is similar to Fig. 5a, although for the particularthe initial stage ofspot This may happen at lower powers,

values of parameters employed in calculationslaes not than these required to grow the fiber from ttepe

exhibit an increase i (0) with hy. Thus, the transition to Figure 7b demonstrates new feature. Kdr=1, with R

the extensive growtltsee Fig. 6 occurs at different param- kept constant(normalized HB(O) first increases, and then

eters for the spots and the stripes. This may explairbthe decreases, and can reach the vakmaallerthan 0.88 which
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