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We present a fast algorithm for calculations of the temperature distributions induced by the energy
beam in the three-dimensional deposits of arbitrary shape. It combines analytical approximations,
numerical fast Fourier transform, and the multigrid technique. The accuracy of the method is
demonstrated with problems that can be solved analytically. The behavior of the center temperature
in laser-deposited spots and stripes of different shapes and sizes is studied. The results can explain
explosive growth in laser-induced deposition and instabilities in laser direct writing, and provide a
tool for a quantitative analysis of energy beam microprocessing. ©1996 American Institute of
Physics.@S0021-8979~96!08614-8#
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I. INTRODUCTION

Microprocessing1–3 by means of laser and electro
beams becomes an increasingly versatile tool in microe
tronics, micromachining, and micromechanics. The kno
edge of the beam-induced temperature distribution is a p
requisite for the understanding of kinetics of the underlyi
pyrolytic processes. Experimental measurements of the t
perature are difficult mainly because of the small area of
processed zone, changes in its geometry, and the necess
perform it without direct contact~see e.g., review4 and ref-
erences therein!. For these reasons, calculated temperat
distributions are often quite useful. Here, one can distingu
between the two cases.

In some processes, the change in the geometry of
specimen is easily incorporated in computational algorith
The examples are the doping of plane surfaces or the de
sition of homogeneousfilms. In such cases analytical an
numerical solutions5–9 can be applied, some of them includ
multilayer structures,10 different shapes of the energ
beam,11 temperature dependent material parameters, melt
etc.

In other applications, the geometry within the process
zone changes dramatically. Examples are drilling, cutti
etching and deposition of patterns with high aspect rat
e.g., in three-dimensional~3D! fabrication of devices in mi-
croelectronics or micromechanics.12,13

Temperature calculations for such systems were p
formed numerically,14,17often by assuming a fixed geometry
This does not allow to model deposition or etching. In Re
18,19 the temporal behavior of the deposition processwas
simulated and some non-trivial shapes like valleys in
center of deposits~due to decrease of the deposition rate w
temperature! were reproduced. This procedure, however,
quires the use of supercomputers. In Ref. 20 we propose
one-dimensional~1D! analytical model for laser direct writ-
ing, which permits also to describe oscillations and disc
tinuous deposition.21,22 This approach proved to be suitab
for a qualitative explanation of experimental results, but
does not always providequantitative agreements. For a

a!Electronic mail: nikita.arnold@jk.uni-linz.ac.at
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quantitative description atwo-dimensional~2D! approach23

for thermally thindeposits is more promising. However,
many processing situations the assumption of thermally
patterns is violated. Moreover, for some effects tempera
variationswithin depositsare crucial. Besides, the comput
tional algorithm used in Ref. 23, although by far superior
the direct finite differences or finite element solution of a 3
problem, was still rather slow for extensive simulations a
an analysis of experimental results.

In this article we generalize the approach of Ref. 23
include thermally thick deposits, derive the equations wh
can be used to calculate the temperature distribution w
arbitrary accuracy, and study in detail the approximat
which suffices for many practical purposes. The numeri
method combines fast Fourier transform~FFT! for calculat-
ing 2D convolutions, and the multigrid method of solutio
for the 2D elliptical equation with non-constant coefficien

II. MODEL

We consider the situation schematically shown in Fig.
The deposit with thermal conductivityKD(T) occupies the
region 0,z,h(x,y) on a semi-infinite substrate with the
mal conductivityKS(T). The incident energy beam can b
absorbed within both the deposit and the substrate. We
sume that the temperature distributionT(x,y,z) can be de-
termined from the stationary heat equation. This is a go
approximation inmicroprocessing where typical heat veloc
ties are much greater than characteristic scanning veloc
of the energy beam or the growth or etch rate.

The heat conductivities can depend on temperature in
arbitrary way. This is handled via the Kirchhoff transform
for substrate and deposit. Kirchhoff transform with respec
K(T) is given by:

u~T!5
1

K~T0!
E
T0

T

K~T8!dT8.

It makesstationaryheat conduction equationlinear5,7 with
respect tolinearized temperatureu. HereT0 is the ambient
temperature.InverseKirchhoff transform yieldsT(u) depen-
dence. With these assumptions the thermal problem can
written as:
129191/8/$10.00 © 1996 American Institute of Physics
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KDS ]2uD
]z2

1¹2uDD1QD50, ~2.1a!

KS¹3
2uS1QS50, ~2.1b!

]uD
]n U

z5h~x,y!

5n¹3uDuz5h~x,y!5@11~¹h!2#21/2

3S ]uD
]z

2¹h•¹uDD U
z5h~x,y!

50, ~2.2a!

uSuz→2`5uSu uxu,uyu→`50, ~2.2b!

KD

]uD
]z U

z50

5KS

]uS
]z U

z50

, ~2.2c!

T~uDuz50!5T~uSuz50!. ~2.2d!

Here, uD and uS refer to the deposit and substrate respe
tively andKS[KS(T0),KD[KD(T0) are constant.¹3

2 is 3D
Laplacian and¹2 and ¹ are 2D Laplacian and 2D nabla
operator. The derivative with respect tozwas extracted from
¹3
2 in Eq. ~2.1a! in order to perform averaging later in Sec

III. QD andQS are~volume! source terms~u-dependent if the
optical properties of the materials depend on temperature!. n
is the unit ~outward! normal to the surface of the depos
~Fig. 1!:

n5~nx ,ny ,nz!5@11~¹h!2#21/2S 2
]h

]x
,2

]h

]y
,1D .

~2.3!

In Eq. ~2.2a! we neglect heat losses from the upper surfac
Equation~2.2c! reflects the continuity of the heat flux acros
the interface, and Eq.~2.2d! the continuity of the tempera-
ture.

It is attractive to reduce 3D system in Eqs.~2.1!–~2.2! to
a set of 2D equations which allow to calculate the~linear-
ized! temperature at the surface of the deposit
uD
h (x,y)[uD(x,y,z5h(x,y)). One way is to write Green’s
formula24 for the deposit and substrate. This approach giv
a system of integro-differential equations for the temper

FIG. 1. Schematic picture of a 2D model for the temperature calculatio
y-axis is perpendicular to the plane of the figure. The surface of the dep
is atz5h(x,y). n is the normal to this surface andr is 2D radius vector in
(x,y)-plane.
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tures and the normal derivativesat all the interfaces.This
system is 2D and it isexact, but its integrals do not have th
form of convolutions, as the integrals presented in Sec.
This does not allow to use FFT methods for their calcu
tions, which dramatically slows down the numerical alg
rithm.

Below we adopt different approach, based on averag
procedure.

III. ANALYTICAL CONSIDERATION

Solving Eq. ~2.1b! within the substrateusing Green’s
function technique25 we have forz50:

uS
0[uS~x,y,0!5

1

2pH uS8*
1

r J
1

1

2pE2`

0 E
2`

` E
2`

` QS~r 8,z8!dz8d2r 8
~ ur2r 8u21z82!1/2

. ~3.1!

Here,uS
0 denotes the linearized temperature of the subst

at z50, uS8 the derivative with respect toz at z50, $* %
denotes the 2D convolution integral,r and r 8 are the radius
vectors in (x,y) and (x8,y8! planes, andr ,r 8 are their
lengths. The last integral in Eq.~3.1! is often either absen
~transparent substrate or everything is absorbed within
deposit!, or the integration overz8 can be approximated
and/or performed analytically, so that the remaining integ
has the form of 2D convolution.uS8 in Eq. ~3.1! should be
derived from the heat conduction equation for the depos

Now we perform certain averaging. We multiply E
~2.1a! by an arbitrary functionf (z) and integrate the resul
overdz from z50 to z5h(x,y)[h~r !, which we henceforth
denote ash. We integrate the first term by parts and use t
boundary conditions Eqs.~2.2a! and ~2.2c! to eliminate
z-derivatives atz50, h:

KDf ~h!¹h•¹uDuz5h2KSf ~0!uS81KDF2E
0

h

f 8uD8 dz

1E
0

h

f¹2uDdzG1E
0

h

fQDdz50. ~3.2!

Here, f 8, uD8 denotez-derivatives. The first term in Eq.~3.2!
and the second term in square brackets can be combined
we can substitute:

uD~x,y,z!5uD
0 ~x,y!1uD

1 ~x,y,z!, uD
1 ~x,y,0![0.

~3.3!

Here uD
0 is the temperature of the deposit at the interfa

z50. This yields:

KSf ~0!uS85E
0

h

fQDdz1KD¹F S E
0

h

f dzD •¹uD
0 G

1KDF¹S E
0

h

f¹uD
1 dzD 2E

0

h

f 8uD
18dzG .

~3.4!

Equation~3.4! is exactand valid for arbitrary functionf (z).
It is possible to expanduD in Eq. ~3.3! in a series of
z-dependent functionsf i(z), substitute it into Eq.~3.4! and

ns.
osit
N. Arnold
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perform averaging overz with each of these functionsf i
used as a weight functionf in Eq. ~3.4!. This results in an
~infinite! set of equations for the (x,y) dependent coeffi-
cients in this expansion, which approximateuD with arbi-
trary precision.

We will use f 0 , f 1 which arise from thefirst two terms
of the Taylor expansion ofuD in z-coordinate. The resulting
pair of equations has a clear physical meaning and, as
shown in Sec. IV, it provides a good approximation to t
whole problem for a wide range of parameters. Namely,
assume:

uD~x,y,z![uD
0 ~x,y!1uD

1 ~x,y,z!5 f 0~z!uD
0 ~x,y!

1 f 1~z!u1~x,y!, ~3.5!

f 0~z![1, ~3.6a!

f 1~z![z. ~3.6b!

Equation~3.4! written for f5 f 0 and f5 f 1 gives two Galer-
kin ~or variational! equations26,27 for the trial solution~3.5!:

KSuS85E
0

h

QDdz1KD¹~h¹uD
0 !1KD¹S h22 ¹u1D ,

~3.7a!

KD
21E

0

h

zQDdz1¹S h22 ¹uD
0 D1¹S h33 ¹u1D5hu1 .

~3.7b!

The physical meaning of these equations can be illustrate
follows. With h→0 we can neglect the last term in E
~3.7a!. The resulting equation is the energy balance wit
the thermally thin deposit. The second term in the right s
represents the lateral ‘‘spreading’’ of the surface tempera
due to the presence of the deposit.23 The last term in Eq.
~3.7a! gives further correction to the approximation of a th
deposit.

In order to elucidate the meaning of Eq.~3.7b!, let us
again considerh→0, and assume thatQD is absorbed on the
upper surface of the depositz5h. Then, Eq.~3.7b! degener-
ates intoKDu15I A , whereI A is the total absorbed intensity
But from Eqs.~3.5! and ~3.6!, u1 is just z-derivative of the
temperature, and thus, Eq.~3.7b! is the condition of flux
conservation. Note, that the right side of Eq.~3.7b! is the
temperature difference within the deposituD

h 2uD
0 .

In the general case, Eqs.~3.7! are coupled.u1 should be
found from Eq.~3.7b! and substituted into Eq.~3.7a! which
yields uS8 . Then,uS8 should be inserted into Eq.~3.1!. uS

0 in
Eq. ~3.1! should be considered as the function ofuD

0 :

uS
0[uS

0~uD
0 !5TS

21@TD~uD
0 !#. ~3.8!

Here,TD(uD
0 ) is given by theinverseKirchhoff transform

with respect todeposit, andTS
21 is direct Kirchhoff trans-

form with respect to thesubstrate. Equation~3.8! is the con-
dition ~2.2d! of temperature continuity, rewritten in terms o
uD anduS .

23 Thus, Eq.~3.1! becomes nonlinear integrodif
ferential equation for the determination ofuD

0 . OnceuD
0 has

been found,u1 and uD
h can be determined from Eqs.~3.7b!

and 3.5! with z5h ~see Eq.~4.2!!.
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IV. NUMERICAL PROCEDURE

Let us enumerate the advantages of the system of E
~3.1!, ~3.7!, ~3.8!.

~i! It is 2D instead of 3D in the initial problem.
~ii ! Integrations in Eqs.~3.1! and~3.7! are confined to the

regions whereQ or h are non-zero, although thetem-
peratureat the boundaries of this region is still much
higher thanT0 . Thus, no boundary conditions foru at
infinity should be considered in thenumericalalgo-
rithm. This leads to a big decrease in the size of th
discretized region.

~iii ! No boundary conditions of the type of Eqs.~2.2c! or
~2.2a! on the non-planar surface should be considere
This is particularly advantageous for problems whe
h changes with time.

~iv! The form of Eqs.~3.7b! and ~3.1! allows to use such
methods as multigrid and FFT,28 which speed up the
calculation by about twoordersof magnitude.

~v! Even with arbitrary dependencesKD(T),KS(T) the
algorithm remains essentially linear.

The sequence of steps in the numerical solution is t
following. Equation~3.1! is solved iteratively with respect to
uD
0 . Symbolically it can be written as:

uD,i11
0 5uD,i

0 1cF 12pH uS8~uD,i
0 ,u1~uD,i

0 !!*
1

r J
1I S@uS

0~uD,i
0 !#2uS

0~uD,i
0 !G . ~4.1!

Here, indexi denotes the number of iteration, and differentu
are functions~arrays in numerical realization!. The expres-
sion in outer square brackets is Eq.~3.1!. I S denotes the last
integral in Eq.~3.1!. c is constant coefficient introduced to
ensure convergence. The functionuS8(uD

0 ,u1) is defined ex-
plicitly by Eq. ~3.7a!. The functionu1(uD

0 ) is implicitly de-
fined by Eq.~3.7b!. In order to findu1 from uD

0 , the elliptic
problem of Eq.~3.7b! is solved by multigrid technique. The
function uS

0(uD
0 ) is given by Eq.~3.8!. The convolutions are

calculated by FFT method. Obviously, some of the functio
in Eq. ~4.1! depend on the array of heighth via Eq. ~3.7!.
After uD

0 and u1 have been found, the temperature at th
surface of the deposit can be written by inverse Kirchho
transform ofuD

h which is given by Eq.~3.5! with z5h

Tuz5h5TD~uD
h !5TD~uD

0 1hu1!. ~4.2!

This formula should also be used in Eq.~4.1! during the
calculation if, for example, the absorptivity of the depos
depends on surface temperature.

There exist some subtleties in the numerical procedu
which we briefly outline below.

The convolution integral in Eq.~4.1! has a singularity at
r50 which makes it sensitive to the choice of the mesh. O
mesh point was placed atr50 with the r21 value given by
the integration over the rectangle20.53dx,x,0.53dx,
20.53dy,y,0.53dy, where dx and dy are the spatial
steps:
1293N. Arnold
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21 ~r50!52S dy21 lnH dydx1F11S dydxD

2G1/2J
1dx21 lnFdxdy111S dxdyD

2G1/2D . ~4.3!

FFT works only on a uniform mesh. Thusdx,dy
5const., which can be considered as a disadvantage of
method. Nevertheless, the decrease in computational t
provided by the FFT an multigrid routines pays off this lim
tation. In Eq. ~4.1! two functions are convoluted2r21,
which has infinite support, anduS8 , which, as it can be seen
from Eq. ~3.7!, is equal to zero outside the regions whe
intensity and height have non-zero values. This is exactly
region where we want to calculate the temperature distrib
tion. In order not to spoil the result of convolution by edg
effects, one has to consider the region twice as big inx,y
coordinates. The functionuS8 should be padded with zeros in
this region, and stored in wrap around order,28 whereasr21

should be calculated in a normal way.
The FFT works efficiently when the number of mes

points in one coordinate isN52n. The multigrid method28

works best ifN52m11. To satisfy both requirements, the
grid was extended one point for each coordinate when E
~3.7b! was solved to determineu1.

The coefficientc in Eq. ~4.1! ensures convergence of th
iterations. Ifc is not small enough, instability arises, which i
analogous to that of the explicit schemes in parabolic tim
dependent equations: The most ‘‘dangerous’’ region for t
discretization ~4.1! of Eqs. ~3.1! and ~3.7! is the area
dS;dx dy nearr50, wherer21;max(dx21,dy21), andh
is a slowly varying function. The discretization of the secon
derivatives in Eq.~3.7a! and substitution ofuS8 into Eq.~4.1!
can be schematically written as:

uD,i11
0 2uD,i

0

c
'

1

2p

KD

KS

hdS

min~dx,dy!
¹2uD,i

0 1... . ~4.4!

Applying Courant stability criterion28 to Eq.~4.4!, we get the
restriction onc:
1294 J. Appl. Phys., Vol. 80, No. 3, 1 August 1996
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c<minS 1,c1 KS

KD

min~dx,dy!

hmax
D . ~4.5!

Coefficient c1'1 arises from the approximations mad
omitted terms in Eq.~4.4!, and should be determined numer
cally. hmax is the maximum value of height. The value o
c51, provides the fastest possible convergence forh50,
although the scheme is stable up toc52. With smallc the
convergence is slow, thereforec should be taken as big a
possible, using Eq.~4.5! as an estimation.

The program was written in FORTRAN. With typica
valuesKS/KD'1, dx/hmax'0.1, the calculations up to 1025

accuracy on 64364 grid required from 1 s toabout 1 min on
the Pentium 90 CPU.

V. VALIDATION OF THE APPROXIMATIONS AND
ALGORITHM

The program was tested on the problem with the anal
cal solution—the case ofuniformheighth and fixed ratio of
heat conductivitiesK*5KD(T)/KS(T) which leads to
uS
0[uD

0 in Eq. ~3.8!. Here we present the solutions for th
center ~linearized! temperature at the upper surface of t
deposit uD

h (0)[uD
h (r50!. We assume Gaussian bea

I~r !5I 0 exp~2r 2/w0
2) with spot sizew0 , and surface absorp

tivity A. More general solutions are given in Ref. 8. For t
surfaceabsorption in thedeposit

uD
h ~0!KS

AI0w0
5
1

2E0
`

e2k2/4

3
ch~kh/w0!1K*21sh~kh/w0!

ch~kh/w0!1K* sh~kh/w0!
dk ~5.1a!

for surfaceabsorption in thesubstrate:

uD
0 ~0!KS

AI0w0
5
1

2E0
`

e2k2/4
dk

ch~kh/w0!1K* sh~kh/w0!
~5.1b!

and for the Bouger absorption with the absorption coeffici
a within the deposit only:
uD
h ~0!KS

AI0w0
5
1

2E0
`

e2k2/4
a2

a22k2 Fch~kh/w0!1K*21sh~kh/w0!

ch~kh/w0!1K* sh~kh/w0!
H 12S ka sh~kh/w0!1ch~kh/w0! De2ahJ

1K*21S sh~kh/w0!1
k

a De2ah2K*21
k

aGdk. ~5.1c!

The source terms in Eq.~3.7! for these cases are given by

E
0

h

QDdz5F AI~r !AI~r !

AI~r !~12e2ah!

, E
0

h

zQDdz5F AI~r !h0

AI~r !h@12~ah!21~11e2ah!#.

~5.2a!

~5.2b!

~5.2c!
N. Arnold
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TABLE I. The comparison between the analytical~Eq. ~5.1!! and numerical~Eqs.~3.1! and~3.7!! solutions forh5const. The numbers show the normalize
center temperature rise at the surface of the deposituD

h (0)KS/I 0Aw0 for different values ofK*[KD/KS andh/w0 .

h/w0

K* absorption

0.01 0.1 0.3 1

analyt. numer. analyt. numer. analyt. numer. analyt. numer.

0.1 surfacez50 0.9850 0.9758 1.8469 1.8383 3.4600 3.4440 6.2214 5.802
surfacez5h 0.8851 0.8759 0.8681 0.8592 0.7973 0.7877 0.5291 0.482
Bouger,ah53 0.9093 0.8972 1.4907 1.4529 2.5272 2.4753 3.7674 3.917

1 surfacez50 0.8862 0.8772 0.8862 0.8789 0.8862 0.8762 0.8862 0.835
surfacez5h 0.8763 0.8673 0.7945 0.7870 0.6510 0.6415 0.3789 0.349
Bouger,ah53 0.8394 0.8305 0.8165 0.8076 0.7700 0.7621 0.6350 0.636

10 surfacez50 0.8016 0.7943 0.4871 0.4852 0.3019 0.2989 0.1693 0.157
surfacez5h 0.8007 0.7934 0.4801 0.4781 0.2845 0.2815 0.1269 0.115
Bouger,ah53 0.7615 0.7545 0.4605 0.4589 0.2804 0.2788 0.1412 0.137
ra-

e

on-

ibu-
In Table I we present the values ofuD
h (0)KS/AI0w0 for

differentK* andh/w0 for three types of absorption given b
Eq. ~5.1!. For eachh/w0 ratio the left column shows the
analytical solutions~5.1!, and the right one the numerica
result. Three rows for each value ofK* refer to the cases a
b, c in Eqs.~5.1! and ~5.2!. With thermally thin deposits
and/or moderate ratiosh/w0 the results are indistinguishable

Figure 2 shows the analytical solution and the appro
mate values ofuD

0 (r ) anduD
h (r ) for h/w051, K*51. There

is a good agreement for allr. Similar behavior is observed
for other values ofh/w0 ,K* , with the accuracy illustrated in
Table I.

One more note is appropriate here. The assumption~3.5!
is better fulfilled for the spatiallyconfineddeposits than
h5const where the heat may spread wider within the depo
Correspondingly, the accuracy of the algorithm is better
the confined deposits.

VI. EXAMPLE: TEMPERATURE DISTRIBUTIONS IN
THE SPOTS AND STRIPES

As a nontrivial application of the algorithm we consid
deposited spots and stripes irradiated by the Gaussian b
I ~r !5I 0 exp~2r 2/w0

2). To emphasize the essential featur
of temperature distributions, we assumesurfaceabsorption

FIG. 2. Normalized distributionuD(r ) for constant heighth(r )51, K*51
and surface absorption in the deposit. Solid line—analytical solution~5.1a!.
Dashed line—numerical result foruD

h (r ). w0 is the radius of~Gaussian!
beam.
J. Appl. Phys., Vol. 80, No. 3, 1 August 1996
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in the deposit withA5const, anduS
0[uD

0 in Eq. ~3.8! as in
Sec. V. First, we consider the spots of the generalized pa
bolic shape~see also inset in Fig. 5!:

h~r !5Fh0~12~r /R!2m!, r,R

0, r.R
. ~6.1!

m51/2 corresponds to a cone,m51 to a paraboloid,m@1
to a nearly cylindrical spot.

In Fig. 3 we show the influence of the shape of th
deposit determined by the parameterm on uD

h (r ) anduD
0 (r ).

The influence is weak withK*510, and increases forK*51.
The dependence oftemperature Ton shape may be more
pronounced when linearized temperatureuD

h is recalculated
into T via inverse Kirchhoff transformTD(uD), if TD(uD) is
a strongly increasing function. This is the case for semic
ductors, which heat conductivityK(T) strongly decreases
with T.29

FIG. 3. The influence of the shape of the spot on the temperature distr
tions uD

h (r ),uD
0 (r ). Solid lines—paraboloid spot (m51), dashed lines—

nearly cylindrical spot (m54), dotted lines—cone (m50.5). Normalized
intensity is plotted by dash-dotted line. For all curvesR/w052, h0/w053
and surface absorption within the deposit~Eq. ~5.2a!! have been employed.
1295N. Arnold
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It is illustrative to follow the behavior of the centra
temperature riseuD

h (0) with increasing heighth0 when the
radiusR is kept constant. The normalized dependences
uD
h (0), andcenter temperature at the substrate-deposit int
face uD

0 (0) on h, are presented in Fig. 4 forR/w052 and
different values ofK* . In all cases~normalized! uD

h (0) and
uD
0 (0) start from the value 0.5p1/2'0.88 which corresponds
to the plane semi-infinite substrate~see e.g., Eq.~5.1a! with
h50). With increasingh0 , there is a homogenization of the
temperature within the planez50. As a result,uD

0 ap-
proaches limiting value. The limiting value foruS

0 ~which is
equal touD

0 in this section! can be derived from the energy
balance, corresponding to the uniform temperature5 within
the depositr,R at z50.

P5pw0
2AI054KSuS

0R⇒
uD
0KS

I 0Aw0
5

pw0

4R
. ~6.2!

HereP is the total absorbed power. The value ofuD
h (0) for

K*51 is much higher thanuD
0 (0), due to thetemperature

gradients within the deposit, which deliver the absorbed e
ergy from z5h to z50. With high values ofh0 , uD

h (0)
increases linearly withh0 .

For moderate values ofh0 with R/w0.1 andK*.1,
uD
h (0) establishes as a result of two competing factors:lat-
eral spreading of the heat flux through the good conducti
deposit which tends to decreaseuD

h (0), and theincreasing
temperature difference between the surface of the dep
and deposit-surface interface which tends to increaseuD

h (0).
At small values ofh0 , the first factor prevails, while later the
second factor is more important, anduD

h (0) increases. Cor-
respondingly, there exists a value ofh0/w0 where uD

h (0)
reaches its minimum. This value depends onK* , as well as
on R/w0 which can be seen from the Fig. 5a, dashed line

In Fig. 5 we present the results of calculations of th
normalized center temperature rise at the surface of the
posit uD

h (0)KS/I 0Aw0 as the function of both the heigh
h0/w0 and radiusR/w0 . We considered paraboloidspots
~Eq. ~6.1! with m51), and three values ofK* . With K*,1,
uD
h (0) is always higher than the value 0.88 for the semiin

FIG. 4. The dependence of the~normalized! centertemperature rise at the
surface of the deposituD

h (0) ~solid lines!, and center temperature rise at th
substrate-deposit interfaceuD

0 (0) ~dashed lines!, on the normalized center
height h0/w0 . The deposit is a paraboloid spot (m51 in Eq. ~6.1!! with
fixed radius R/w052. The heat conductivity ratios employed ar
K*[KD/KS510,1,0.1.
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nite substrate.uD
h (0) increases withh0 and decreases withR,

because of the changes in the solid angle into which the h
can dissipate. WithK*.1, uD

h (0) alwayshas a minimum as
a function ofh0 . The dashed line shows the position of thi
minimum for different values ofR.

The example of aself-consistentcalculation, which takes
into account the growth of the spot is presented in Fig.
Here, the profile of height changes with time due to th
deposition~normal to the surface at each point! according to
the Arrhenius kinetics:

W~T!5W0 exp~2Ta /T!. ~6.3!

Details of the numerical procedure will be presented els
where. Parameters, used in calculations are listed in figu
caption. They are close to values, corresponding to the py
lytic deposition of Si from SiH4

1,30,31 or C from CH4 and
C2H2 on quartz.

1,31Figure 6 demonstrates the transition to a
explosive growth regime, i.e., the formation of a fiber. Ini
tially, center temperature decreases, due to better lateral h
conduction within the deposit, and later increases, due
increase in height and build up of the temperature differen
within the deposit inz-direction. The radius of the spot~not
shown! saturates in the initial stage of growth at a valu
R/w0'1.24 for lower intensityI *55, and atR/w0'1.3 for
I *56. Qualitatively,T(0) starts to increase, when during the
growth, the spot enters the region to the right side of th

FIG. 5. The center temperature rise at the surface of the depo
uD
h (0)KS/I 0Aw0 as the function of the heighth0/w0 and radiusR/w0 for the
paraboloidspotsfor differentK* . The geometry of the spot and the meaning
of R, h0 are illustrated in the inset. Surface absorption within the depos
Dashed line shows the position of theminimumin uD

h (0)[h0] dependence
~see Fig. 3 forK*510! for different values ofR.
N. Arnold
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dashed line in Fig. 5a. In other words, if the temperatu
starts to increase during the growth process, the growth r
increases as well. This leads to a further increase in heig
which further increases temperature. This feedback loop
sults in the formation of a growing fiber. For higher lase
intensity I 0 ~or power P! the time te to reach explosive
growth regime is much shorter~note, that the difference in
laser powers is only 20%!. If the power is increased twofold,
te decreases 53102 times. This is due to the high activation
energy employed. In case of scanning with velocityvs , this
time should be compared with the dwell timetd of the beam.
If td(vs),te(P), the deposition proceeds in a direct writing

FIG. 6. The time-dependent behavior of the center heighth(0) ~solid curve!
and center temperatureT(0) ~dashed curve! during the pyrolytic deposition
of spots with kinetics of Eq.~6.3!, for two different laser intensities~powers!
I *5I 0Aw0/KST055,6. The parameters employed are:KD/KS510,
Ta/T0570. WithT05300 K,w0510mm, KS50.03 W/cm K~fused SiO2 at
elevated temperatures, see Ref. 33!,W05104 cm/s,A50.5, this corresponds
to RTa541.8 kcal/mol, laser powerP5283 and 340 mW, and one unit of
dimensionless time is equal to 1027 s. These values are typical for the
pyrolytic deposition of Si from SiH4 on quartz substrates, see Refs. 1 an
31.
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regime. If td(vs).te(P), the fiber grows towards the laser
beam instead. Thus the condition of stripe to fibe
transition21,30 depends on bothvs andP.

Figure 7 is similar to Fig. 5, but for the parabolic (m
51) stripes, with the shape given by~see also inset in the
Fig. 7!:

d

FIG. 7. The same as Fig. 5, but for the parabolicstripes(m51 in Eq.~6.4!!.
The geometry of the stripe and the meaning ofR,h0 are shown in the inset.
Dashed line shows the position of themaximumin uD

h (0)[h0] dependence
for different values ofR.
h~r !5F Fh0~12~y/R!2m!,
0,

y,R
y.R,

x,2R

max@0, h0~12~y/R!2m2~~x2R!/2R!2m!#, x.2R.
~6.4!
r
ed

r
m

Herex is the direction along the stripe. Expression~6.4! de-
scribes the profile of stripes, observed in the experiments
laser direct writing.1 The height of the stripe reaches station
ary valueh0 at a distancex52R behindthe laser beam
positioned atr50. For thestripesthe position of maximum
in temperature deviates slightly from the center of las
beam. However, this deviation is small, and we still consi
ereduD

h ~r50!.
Figure 7a is similar to Fig. 5a, although for the particula

values of parameters employed in calculations itdoes not
exhibit an increase inuD

h (0) with h0 . Thus, the transition to
the extensive growth~see Fig. 6! occurs at different param-
eters for the spots and the stripes. This may explain thebi-
on
-

er
d-

r

stability in this transition with respect to laser power and
scanning velocity, observed experimentally.1,21,30 Here the
stripe-fiber transition occurred at different values of lase
power, depending on whether power was gradually increas
or decreased. Withincreasinglaser power the fiber starts to
grow from the continuousstripe. With decreasingpower
from the fiber-growth regime, the growth stops. Then, lase
beam reaches the substrate and new fiber starts to grow fro
the initial stage ofspot. This may happen at lower powers,
than these required to grow the fiber from thestripe.

Figure 7b demonstrates new feature. ForK*51, with R
kept constant,~normalized! uD

h (0) first increases, and then
decreases, and can reach the valuessmaller than 0.88 which
1297N. Arnold
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corresponds to a plain substrate. This can be understood
we consider the front edge of the~big enough! stripe as the
wedge, which permits the dissipation of heat into a sol
anglebigger than 2p ~half space!. Another reason can be the
oblique incidence of the laser beam, which increases the
luminated area. The dashed line shows the position of
maximum in uD

h (0) for different values ofR. Such a de-
crease inuD

h (0), when aggravated by the strong dependen
T(uD), may be responsible for the oscillations observed
the deposition of Si on Si~Ref. 1, p. 112!. There, during the
direct laser writing experiments, the deposit consisted
separated spots, despite continuous scanning. It can be du
the fact, that when certain height is reached, the temperat
becomes so small, that further deposition is impossible.

Figure 7c is again similar to Fig. 5c with much smalle
absolute values ofuD

h due to much higher heat flux into the
stripe, as compared to the spot.

VII. CONCLUSIONS

We present a procedure for fast calculation of the tem
perature distributions in the deposits ofarbitrary shape on
the semiinfinite substrates. Arbitrary temperature depe
dences in heat conductivities are allowed. The accuracy
the method was studied and was found to increase with
creasing heat conductivity ratioKD/KS , or decreasing height
of the deposith. The procedure was used to find the centr
temperature in the deposited spots and stripes. The influe
of the shape of the deposit on temperature distribution w
investigated. This influence becomes more pronounced w
decreasing heat conductivity of the deposit.

It is shown that for thespots, with KD/KS.1, there ex-
ists a height, which corresponds to a minimum central te
perature. This is a result of competition between the late
spreading of the heat within the deposit and the build up
the temperature differences between the surface of the
posit and the substrate-deposit interface.

For certainstripeswith KD5KS the maximum tempera-
ture candecreaseas compared to the plane semiinfinite sub
strate.

The formalism can be applied to a simulation of th
complex behavior observed in the experiments on laser
rect writing of Si1,30 and W32 from gas phase precursors. W
present an example of suchself-consistentcalculations which
takes into account kinetics of deposition and demonstra
transition to the explosive growth~formation of a fiber!.

The developed approach can also be useful in other ar
where the solution of the Poisson equation for compl
~probably time-dependent! geometries is required.
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