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A fast quantitative modelling of ns laser ablation based on
non-stationary averaging technique
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Angewandte Physik, Johannes-Kepler-UniÕersity, A-4040 Linz, Austria

Abstract

A semi-analytical approach to a quantitative analysis of thermal ns laser ablation is presented. The nonlinear heat
equation is reduced to three ordinary differential equations for the surface temperature, spatial width of the enthalpy
distribution, and the ablated depth. Due to its speed and flexibility, the method provides a convenient tool for the fast

Ž .analysis of experimental data. The influence of different factors on ablation curves ablated depth h vs. fluence f is
Ž .studied. Analytical formulas for threshold fluence f and h f dependences are discussed. The ablation curves reveal threeth

regions of fluence: Arrhenius, linear, and the screening region. Small vaporization enthalpy results in a sub-linear but faster
Ž .than logarithmic h f dependence. Weakly-absorbing materials may exhibit two different ablation regimes – without or

with ablation of the heated subsurface layer. The method is applied to the analysis of the single pulse ablation of polyimide.
The single thermal evaporation energy f1.51 eV describes satisfactory the ablation at 248, 308 and 351 nm wavelengths.
q 1998 Elsevier Science B.V.
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1. Introduction

Laser ablation is used in many technological ap-
w xplications 1 . One of the first questions to be clari-

fied by the theoretical analysis is whether the experi-
mental data can be explained by the thermal evapora-

Žtion, or other mechanisms photochemical bond
breaking, hydrodynamics, non-equilibrium excita-

.tions, multi-photon or saturation processes play an
important role.

) Corresponding author. Angewandte Physik, J.-Kepler-Uni-
versitat, Altenbergerstraße 69, A-4040, Linz, Austria. Tel.: q43-¨
732-2468-9243; fax: q 43-732-2468-9242; e-m ail:
nikita.arnold@jk.uni-linz.ac.at.

The present paper deals with purely thermal sur-
face evaporation. There exists a gap between a sim-
ple analysis based on the linear heat equation, and
numerical simulations with powerful computers. A
feedback between the experimental and theoretical
investigations requires a technique that permits rapid
quantitatiÕe analysis of data on a PC. In the field of
ns polymer ablation, the lack of quantitative analysis
of experimental data on the basis of the purely
thermal models lead to speculations and discussions
w x2 . For polymers, three quantities, absorption length,
thermal length, and ablated depth, may be compara-
ble in a typical experiment. Besides, activation tem-
perature and enthalpy of vaporization may be signifi-

w xcantly lower than for metals 3 . This makes the

0169-4332r98r$19.00 q 1998 Elsevier Science B.V. All rights reserved.
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consideration of temperature dependences of specific
w xheat and thermal conductivity more important 4 ,

and at the same time, allows to avoid the considera-
tion of the processes in the ionized plume.

We propose fast method to find an approximate
solution to the nonlinear heat equation based on

Ž w x.non-stationary averaging e.g., Ref. 5 . It permits
one to study the influence of: temperature depen-
dences in specific heat, thermal conductivity, absorp-
tivity; arbitrary temporal profiles of the laser pulse;
strong dependence of the ablation velocity on the
surface temperature; screening of the incoming radi-
ation by the ablated products; ablation enthalpy;
melting andror other phase transformations. Not
included are hydrodynamical effects, nonlinear opti-
cal effects, optical breakdown, and thermally in-
duced stresses.

2. The model

For the analysis of thermal ablation, we use one-
dimensional heat equation with ablation velocity Õ

Ž . w xsÕ t changing during the pulse 6 . We write it in
Ž . T Ž .terms of volumetric enthalpy H T srH c T dT ,T 1 10

Žwhere T is the temperature, c specific heat per unit
.mass of the condensed phase, and T the ambient0

temperature. The density r is assumed to be con-
stant. In the moving reference frame fixed with the

w xablation front 1 :

EH EH E ET
sÕ q K T q I a exp ya zŽ . Ž .sž /Et Ez Ez Ez

'B z ,t 2.1Ž . Ž .
where K is the heat conductivity, and we introduced
the notation B for the r.h.s. Latent heat of phase

Ž .transformations can be included into H T . The
intensity within the sample shall obey Bouguer equa-
tion. I is the intensity absorbed at the surface.s

Henceforth, index s will refer to the quantities at the
surface zs0. We adopt the following approxima-

w xtions. Following Refs. 7,8 , we relate I to lasers
Ž .pulse intensity I t by:

I s IA exp ya h , 2.2Ž .s g

where A is the absorptivity, and a vapor absorp-g

tion coefficient recalculated to the density of solid.

Both may depend on T . The surface recession rate Õs
w xshall be given by 1,7 :

ÕsÕ exp yT rT , 2.3Ž . Ž .0 a s

where T is the activation temperature. At zs0, wea
w xassume negatiÕe thermal flux J 4,7 :s

ET EH
< <yK 'yDzs0 zs0s

Ez Ez
def

syÕ LqH T yH T ' J .Ž . Ž .g s s s

2.4Ž .

D 'K rrc is the thermal diffusivity, and the ex-s s s

pression in square brackets is the enthalpy difference
between the vapor and condensed phase at TsT . Ls

is the volumetric latent heat of vaporization at T ss
Ž . T Ž .T , H T srH c T dT . c is the specific heat0 g T g 1 1 g0

Ž . Žper unit mass of vapor. T z™` ™T , and T ts0
.0 sT .0

This model is often applied for the description of
laser ablation, and involves numerical solution of the
partial differential equations. Below, we use the

w xmoments technique 5 to reduce it to three ordinary
Ž .differential equations ODE which can be solved

very fast by many computational packages.

3. Method of moments

The exact solution of the boundary value problem
Ž Ž . Ž . Ž . Ž .. Ž .Eqs. 2.1 , 2.2 , 2.3 and 2.4 fulfils Eq. 2.1

Ž .identically. If one uses trial solution HsH z,t ,p
Ž .Eq. 2.1 will be violated. Nevertheless, one can use

Ž .H z,t as an approximate solution, if it obeysp

‘conservation laws’ for the moments M :n

`
nṀ s z B H z ,t d z ,Ž .Hn p

0

`
nwhere M s z H z ,t d z . 3.1Ž . Ž .Hn p

0

Ž . nHere, Eq. 2.1 was multiplied by z and integrated
over z, and dot stands for time derivative. The

Ž .number of differential equations in Eq. 3.1 should
be equal to the number of time-dependent parameters

Ž .characterizing H z,t . We consider two such pa-p
Ž .rameters – surface temperature T t and characteris-s

Ž .tic ‘thermal length’ l t for the enthalpy distribution.
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Therefore, we must use two first moments. Eqs.
Ž . Ž .2.4 and 3.1 yield:

Ṁ syÕH qJ q I 'yÕ LqH q I 3.2aŽ .Ž .0 s s s gs s

Ts
Ṁ syÕM q K T dTq I ra 3.2bŽ . Ž .H1 0 s

T0

Ž . Ž .Here, H 'H T , H 'H T . The equation fors s gs g s

M reflects the time-dependent energy balance. We0
Ž .set H z,t , in the form:p

ya zH z ,t s H y lJ rD e y a lHŽ . Ž . Žp s s s s

yz r lylJ rD e r 1ya l . 3.3. Ž . Ž .s s

Ž . Ž .This satisfies requirement H zs0,t 'H t andp s
Ž .boundary condition Eq. 2.4 . The first term in Eq.

Ž .3.3 is related to absorption of radiation, while the
second describes the changes in enthalpy distribution

Ž .due to heat conduction. With ls0, Eq. 3.3 gives
calorimetric solution. With Õsconst., it coincides

w xwith the stationary ablation wave solution 6,7 . For
Ž . Ž .the first two moments defined in Eq. 3.1 , Eq. 3.3

yields:

M s lqay1 H yay1 lJ rD ,Ž .0 s s s

M s l 2 q lay1 qay2 H y lqay1Ž . Ž .1 s

=ay1 lJ rD . 3.4Ž .s s

Ž . Ž .When Eq. 3.4 is substituted into Eqs. 3.2a and
Ž .3.2b , one obtains two ODE for T and l. Alls

quantities should be written in terms of the surface
temperature T . Namely, one should insert J and Ds s s

Ž . Ž . Ž .from Eq. 2.4 , I and Õ from Eqs. 2.2 and 2.3 ,s
Ž .and H from Eq. 2.1 . Numerical computationss

were done with ‘Mathematica’ software package
Ž . Ž .without resolving Eqs. 3.2a and 3.2b with respect

to dT rd t and d lrd t.s

The equation for the thickness of ablated material
Ž Ž . Ž .coupled to Eqs. 3.2a and 3.2b via screening Eq.
Ž .. Ž Ž ..2.2 is given by Eq. 2.4 :

ḣsÕsÕ exp yT rT 3.5Ž . Ž .0 a s

Ž . Ž . Ž .Thus, the initial problem Eqs. 2.1 , 2.2 , 2.3 and
Ž .2.4 is reduced to three ODE for T , l, and h. Thes

Ž . Ž .initial conditions are: T ts0 sT , l ts0 s0,s 0
Ž .h ts0 s0. The solution of these equations coin-

cides with analytical and numerical solutions of the
Ž . Ž . Ž . Ž .initial problem Eqs. 2.1 , 2.2 , 2.3 and 2.4

within 10% accuracy.

4. Approximate analytical formulas for the generic
case

Here we describe the general features of ablated
depth vs. fluence curves. The deviations from the
general trends will be discussed in subsequent sec-
tions. The temporal profile of the excimer laser pulse
is approximated by the smooth function:

t t
I t s I exp y . 4.1Ž . Ž .0

t t

The laser fluence is given by fs I t and pulse0

duration at the full widths at half maximum tFWHM

f2.446t .
Fig. 1a gives an example of calculated ablation

curve, which corresponds to the case which we call
Ž .1r2‘generic’. Heat penetration depth ; Dt , ab-

sorption length ay1 and ablated depth h are compa-
rable for this case. The values of parameters are
given in the figure caption. The ablation curve
demonstrates remarkable simplicity, which holds
even if some of parameters depend significantly on
temperature. One can subdivide the ablation curve
into three regions: Arrhenius tails, linear region and
screening region.

4.1. Linear region and ablation threshold

At moderate fluences, or if screening can be
neglected, the ablation curve in Fig. 1a is almost
linear. Such a behavior is not self-evident with tem-
perature-dependent material parameters and essential
non-stationarity of the process. Fig. 1b demonstrates
the sensitivity of the method. One can see the in-
crease in the absorbed intensity and temperature at
the initial stage of heating due to assumed linear

Ž .increase in absorptivity A T , slowing down of thes

heating rate near the melting point, increase in heat-
ing rate due to smaller heat conduction at T)T ,m

influence of ablation onset onto T , screening, etc.s

Thermal length l by no means stabilizes during the
pulse. Neither does it correlate with the intensity I ,s

as it would have been for the quasi-stationary abla-
w x Ž .tion 9 . Nevertheless, h f dependence is linear

above 2%3f , as predicted by the quasi-stationaryth
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consideration, though for somewhat different reasons
Ž .– conservation of energy and sharp Õ T depen-

Ž .dence. Due to the latter, Õ t changes much faster

Ž . Ž .Fig. 1. a Ablated depth solid curve and maximal surface
Ž . Ž . Ž .temperature dotted curve calculated from Eqs. 3.2a and 3.2b

Ž . Ž .and Eq. 3.5 for laser pulse given by Eq. 4.1 . Here, and in
subsequent figures, thin dashed lines show linear approximations
Ž Ž . Ž ..Eq. 4.3 and Eq. 4.8 . Inset shows near threshold behavior. No
melting. Dimensionless variables: Time a 2Dt, thermal length and
ablated depth a l, a h, velocity ÕraD, temperature T rT , inten-s 0

sity IraKT , fluence farcrT . Parameters satisfy the condi-0 0

tions: As1, a 2Dt s1, Õ rDa s103, Lr rcT s20, T rT s0 0 a 0

70, H s H, a s0.2 a . They correspond, e.g., to t s10 ns,g g

Ds10y2 cm2rs, a s105 cmy1 , Õ s106 cmrs, T s21,0000 a

K '1.81 eV, T s300 K, cs1 JrgK, r s1 grcm3, Ls60
3 Ž .kJrcm strongly absorbing polymers . For these numbers, unit of

time is 10 ns, of temperature 300 K, spatial unit 0.1 mm, and unit
Ž .of fluence 3 mJ. b Time evolution of the surface temperature

Ž . Ž .dotted curve , ablated depth and ablation velocity solid curves ,
Ž . Žthermal length dashed curve and molten depth dash–double

.dot . Laser pulse and the laser intensity at the surface are shown
by dash-dotted, temperature calculated analytically neglecting
melting and ablation by thin solid curve. farcrT s370. a s0 g

0.5a . Melting T rT s4.5, with the latent heat of fusionm 0

H r rcT s3 is introduced. Absorptivity increases linearly fromm 0
Ž . Ž . Ž . ŽA T s0.2 to A T GT sconst.s0.9. K T )T s3K T -` s m m
.T . Other parameters as in Fig. 1a.m

Ž . Ž Ž . . Žthan T t but not necessarily faster than l t ! sees
. Ž .Fig. 1b . Having this in mind, we integrate Eq. 3.2a

over time up to the moment when ablation and laser
irradiation are finished and Õs0, J s0. LqH iss gs

a slow function of time in comparison to Õ. We also
assume constant absorptivity A to obtain analytical

Ž .expressions. This, together with Eq. 3.4 for the M0

yields:

Afsh LqH qH lqay1 . 4.2Ž . Ž .Ž .gs s

This reflects the energy conservation law. Absorbed
Ž .fluence is spent on ablation first term and heating

Žof the bulk second term, which is the enthalpy
.content within the material M . The second term in0

Ž .Eq. 4.2 often does not change much at elevated
Ž . Ž .fluences, and Eq. 4.2 yields linear h f depen-

dence:

A
hfB fyf , Bs ,Ž .th LqHŽ .gs

H lqay1Ž .s
f s . 4.3Ž .th A

Ž .At low fluences, the last term in r.h.s. of Eq. 4.2
dominates – laser mainly heats the material. In this
region, T and H at the end of the pulse depends s

significantly on fluence. This is Arrhenius region.
The transition to linear regime occurs when the two

Ž .terms in Eq. 4.2 are comparable, i.e., laser energy
splits about equally between the vaporization and the
heating of material. To find typical surface tempera-
ture at this transition, T , we approximate h and lv

near the threshold as:
1r2² :hfÕ T t , lf D T t ,Ž . Ž .Ž .v FWHM v FWHM

Tv² :with D T ' K T dT rH T 4.4Ž . Ž . Ž . Ž .Hv v
T0

Ž .and equate both terms in r.h.s. of Eq. 4.2 . This
gives the equation for T :v

Õ T t LqH TŽ . Ž .v FWHM g v

1r2 y1² :sH T D T t qa . 4.5Ž . Ž . Ž .Ž .v v FWHM

When T is found, it should be substituted intov
Ž .temperature dependent quantities in Eq. 4.3 to give

f and the slope B of the ablation curve, as aboveth

threshold T changes slowly with increasing flu-s max
Ž .ence Fig. 1a .

Ž . Ž .In general, Eqs. 4.4 and 4.5 should be consid-
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ered as a rule of thumb, deduced from the compari-
Ž .son with the numerical solution of Eqs. 3.2a and

Ž .3.2b with different temperature dependences in
Ž . Ž . Ž . Ž Ž ..K T , c T and Õ T . Linear dependence Eq. 4.3

is shown in Fig. 1a by the dashed line, together with
T and f . Several comments on this linear depen-v th

dence are appropriate.
Ž .i Low temperature behavior of material parame-

ters changes f , but not the slope B of the ablationth

curve.
Ž .ii The slope B depends only on high tempera-

ture value of absorptivity and vaporization enthalpy.
With f4f ablation curves are quite insensitiveth

to the temperature dependences of c and k.
Ž . Ž .iii f , as defined by Eq. 4.3 is not the fluenceth

‘spent on heating before the ablation starts’. It is
what is ultimately wasted on heating, when the
ablation is finished.

The last notion explains why good heat conduc-
Ž Ž ..tors obey linear law Eq. 4.3 better. The heat

losses in this case are independent of ablation even
at relatively high fluences.

4.2. Screening region

With the optical thickness of the plume in Eq.
Ž .2.2 proportional to the current value of h, we can

Ž . y1 Ž .multiply Eq. 3.2a by A exp a h and rewrite itg

in a differential form:

dfsAy1 LqH eag hdhqAy1eag hd M 4.6Ž .Ž .gs 0

Ž .Now we integrate Eq. 4.6 with the argumentation
Ž .similar to that which lead to Eq. 4.2 . In the first

term in r.h.s., all T -dependent quantities should bes

taken at T . The second term is more complicated.v
Ž .M the heating losses changes only when ablation0

Ž .is present Õ/0 or radiation reaches the surface
Ž . Ž Ž ..I /0 see Eq. 3.2a . This is fulfilled as long ass

Ž .a h-1, exp a h f1. If screening does not signif-g g

icantly shorten the duration of laser intensity at the
Ž .surface, we have for the last term in Eq. 4.6 :

Ay1 exp a h d M fAy1M t 'fŽ .Ž .H g 0 0 FWHM th

4.7Ž .

Ž . Ž .The last identity follows from Eqs. 3.4 and 4.3 .
With this approximation, after the integration, Eq.
Ž .4.6 yields for h:

1
hs ln 1qa B fyf 4.8Ž . Ž .g th

ag

Ž .with B and f given by Eq. 4.3 as before. Theth
Ž Ž ..dependence Eq. 4.8 is shown in Fig. 1a by the

w xdashed curve. Similar result was obtained in Ref. 9
from the quasi-stationary approximation. At moder-

Ž .ate fluences with a h-1, Eq. 4.8 coincides withg
Ž Ž ..no screening result Eq. 4.3 .

Ž Ž .Linear and logarithmic approximations Eqs. 4.3
Ž ..and 4.8 were verified by calculations with differ-

ent temperature dependences in the specific heat,
thermal conductivity, vaporization parameters and
absorptivity. The Arrhenius tails at f-f , as wellth

as f itself are strongly affected by the temperatureth

dependences in material parameters, evaporation rate
characteristics, and pulse duration and shape.

The slope of the ablation curves B, to the con-
trary, is determined mainly by the latent heat of
vaporization, high temperature absorptivity, and, in
the case of screening, by the absorption coefficient
of the plume a .g

5. Deviations from the generic case

Here we study several cases when simple formu-
Ž Ž . Ž . Ž . Ž ..las Eqs. 4.3 , 4.4 and 4.5 or Eq. 4.8 do not

reflect peculiarities of the ablation process andror
etch curves.

5.1. Temporal profile of the laser pulse

Ž . Ž . Ž .Eqs. 4.3 , 4.4 and 4.5 suggest that laser pulses
of different shapes with the same t result inFWHM

identical ablation curves. In the region a 2DtFWHM

41, the solution of moments approximation reveals
significant influence of the pulse shape onto f , notth

Ž . Ž . Ž .reflected in Eqs. 4.3 , 4.4 and 4.5 . f for theth
Ž Ž ..smooth pulse Eq. 4.1 can be about 30% higher

than f for the rectangular pulse with the sameth

t .FWHM
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5.2. Small ablation enthalpy

Polymer ablation products may have much higher
w xmolecular weight than with inorganic materials 10 .

As a result, ablation enthalpy per gram is signifi-
cantly lower, and the specific heat and enthalpy of
the condensed and the gas phase are almost equal.
Besides, polymers easier undergo thermal destruction
w x3 . An extreme case with Ls0 and low T rT s40a 0

is considered in Fig. 2a. As in the generic case, the
curves have pronounced threshold associated with

Ž . Ž .significant increase in Õ T . At the same time, h fs

dependence has an inflection point at low fluences,
and is slower than linear at high fluences. This
decrease in slope is unrelated to screening. Its pa-

Ž . Ž .rameters are determined by the Õ T and H Ts g s

dependences.

5.3. Temperature dependent shielding

At high fluences, the amount of ablated material
depends mainly on the plume properties. We model a
sharp increase in a with temperature due to ioniza-g

w xtion 7,11 by the model dependence:

a rasC exp yT rT 5.1Ž . Ž .g a s

T is close to ionization potential in Kelvin. Fig. 4ba

Ždemonstrates, that despite sharp dependence Eq.
Ž ..5.1 , the ablation curve resembles the generic case
depicted in Fig. 1a. At low fluences, it follows linear
approximation more closely. At high fluences, it is
slower than logarithmic. The transition to the screen-

Ž . Žing regime occurs at fluences, where a T h Tg s max s
.f1, and at higher fluences, h is rather insensi-max

Ž .tive to the details of a T dependence.g s

5.4. Ablation of weakly-absorbing materials

Ž Ž . Ž . Ž ..Simple approximations Eqs. 4.3 , 4.4 and 4.5
fail if a 2Dt-1. Here, modelling reveals four stages

Ž .of heating and ablation Fig. 3a . Initially, both the
surface movement and the heat conduction may be
ignored. Then, recession velocity becomes signifi-
cant, which slows down the heating of the surface.
Subsurface heated layer is formed at this stage.

Ž .Fig. 2. a Easily decomposing material with T rT s40,a 0

Lr rcT s0. No screening, other parameters as in Fig. 1a. Inset0
Ž .shows near threshold behavior. b Temperature dependent screen-

Ž Ž .. 4 Žing Eq. 5.1 with T s130T , Cs10 a f a with T rT fa 0 g s 0
. Ž Ž .. Ž .14.1 . Logarithmic approximation Eq. 4.8 thin dashed curve

is calculated with a ra s0.1. Inset: h vs. log f.g

Then, the ablation front catches up with the heated
Ž .layer, which is reflected by the decrease in l t .

When the ablation velocity reaches certain value,
Ž . Ž .T t and Õ t sharply increase. This corresponds tos

the ablation of the heated subsurface layer, which
exists due to the positive temperature gradient at the

Ž Ž ..surface Eq. 2.4 . Finally, after the end of the
pulse, the surface slowly cools down by heat conduc-
tion. Significant amount of material is ablated at this
stage. For the numbers employed in Fig. 3, ablation
ceases at a 2Dtf1–10.

The fluence for the ‘second threshold’ – i.e., the
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sharp increase in T and Õ can be estimated from thes
w xtime to heat the layer of thickness ;1ra 6 :

t f1ra Õf LqH ra AIŽ .2 gs

´f f It f LqH ra A. 5.2Ž .Ž .2 2 gs

Ž .The thickness h f f1ra is ablated with this2

fluence. With constant parameters, second threshold

Ž .Fig. 3. a Weakly-absorbing material. Time evolution of the
Ž .surface temperature dotted curve , ablated depth and ablation

Ž . Ž .velocity solid curves , and thermal length dashed curve . Tem-
poral shape of laser pulse is shown by dash-dotted curve.
farcrT s50. As1, a 2Dt s10y4 , Õ rDa s106, Lr rcT0 0 0

s15, T rT s50, H s H , a s0. This corresponds, e.g., toa 0 g s g

t s10 ns, Ds10y3 cm2rs, a s3.16=103 cmy1 , Õ s3.16=0

106 cmrs, T s15,000 K '1.29 eV, T s300 K, cs1 JrgK,a 0

r s1 grcm3, Ls4.5 kJrcm3. With these numbers, unit of time
is 100 ms, of temperature 300 K, spatial unit 3.16 mm, and unit of

Ž .fluence 95 mJ. b Ablation curves for Lr r cT s 15,0
Ž .f arcrT s6.58, T rT s7.48 and Ls0. Second thresholdth 0 v 0

Ž Ž .. Ž .f Eq. 5.2 , and threshold f calculated from Eq. 5.3 are2 1

shown for L/0.

Ž .Fig. 4. Modelling of the single-pulse ablation of PI. a Ablation
Ž .curves and calculated T . b Arrhenius plot of ablation curves.s max

Ž . 6t s6.13 ns t s15 ns , Õ s3=10 cmrs, T s17,500 K,FW HM 0 a
ŽŽ . .T s300 K, cs2.55y1.59=exp 300yT r460 JrgK, c s0 g

y3 Ž .0.282.55 JrgK, K s1.55=10 = Tr300 WrcmK, r s1.42
3 Ž .grcm , Lr r s0.5 kJrg, a s0.45a . ls193 nm triangles :g

5 y1 Ž .As0.93, a s4.25=10 cm ; ls248 nm circles : As0.88,
5 y1 Ž . 5a s3.1=10 cm ; ls308 nm diamonds : As0.89, a s10

y1 Ž . 5 y1cm ; ls351 nm squares : As0.9, a s0.32=10 cm .

Ž .is weakly-reflected in the ablation curve Fig. 3b
because the ablation of subsurface layer may occur
also after the pulse. With f-f , when the pulse is2

finished, l and the overheated layer are larger, cool-
ing is slower, and more material is ablated after the
pulse. The change in ablation curves may be more
significant if, e.g., absorptivity A depends on T . Ins

this case, the slope of the ablation curve at f may2
Ž .change significantly according to Eq. 4.3 , as Ts max

may increase almost twice in a narrow fluence inter-
Ž .val near f Fig. 3b .2
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Ž . Ž .Fig. 3b dashed curves shows, that Eq. 4.3
overestimates f and T because the ablation takesth v

place mainly after the pulse, and it is erroneous to
Ž .use t in Eq. 4.4 . Neglecting the influence ofFWHM

ablation on cooling, one can estimate the fluence f1

at the ‘first threshold’ as:

22Õ T T0 1 a
LqH T exp yŽ .g 1 2 T Ta D a 1

fAf r2,1

Aaf1
T sT q 5.3Ž .1 0 cr

Here, T is the temperature rise just after the end of1
Ž .the laser pulse. Arrhenius dependence in Eq. 5.3

makes f about proportional to crT rAa and less1 a

sensitive to other parameters.
The second threshold is due to vaporization en-

Ž Ž . .thalpy L compare with the T f curve for Ls0 ,s
Ž Ž ..as with Ls0 gradient Eq. 2.4 is zero. For Ls0,

Ž Ž . Ž . Ž ..approximations Eqs. 4.3 , 4.4 and 4.5 work
Ž .even worse than in Fig. 2a. The h f dependence is

faster than logarithmic but slower than linear as
w xobserved in many experiments 2,10 .

Fig. 4 shows the modelling of the single-pulse
Ž . w xablation of Polyimide Kaptone H 12 . The fit of

the region f-f with temperature dependent pa-th
w xrameters from 13,14 for 248, 308 and 351 nm

Žyields a single activation energy T s17500 K'a
.1.51 eV'146 kJrmol , close to that reported for

w xthe thermal degradation of PI 3 . The ablation curves
at higher fluences are fitted by varying L and plume
attenuation coefficient a . Here, the fit is ambigu-g

ous, since increase in both of them decreases the
slope of the ablation curves. Data at 193 nm demon-
strate significant deviations. This suggests either quite
different mechanisms, or significant change in mate-
rial properties.

6. Conclusions

We applied the method of non-stationary averag-
ing to study the influence of different factors onto
ablation curves within the frame of surface thermal
eÕaporation model. Due to its speed and flexibility,
the method provides powerful tool for the fast analy-

sis of the experimental data. The consideration of
time-dependent thermal length gives additional in-
sight into the ablation dynamics.

The ablation curves may be subdivided into three
regions of fluence.

Ž .i Arrhenius region, where laser energy mainly
goes to the heating of the material;

Ž .ii linear region, where the ablated depth in-
creases linearly with fluence due to the overall en-
ergy balance and;

Ž .iii screening region, where shielding of radiation
by the ablation products plays an important role.

Analytical formulas for the threshold fluence f ,th
Ž .and h f dependences at f)f are discussed.th

Small vaporization enthalpy results in a sub-linear
Ž .but faster than logarithmic h f dependence. This

Ž .may explain the increase in slope in log h vs. f

dependences observed in experiments.
With weakly-absorbing materials, ablation may

proceed with or without the ablation of the heated
subsurface layer. The latter occurs at higher fluences
and reveals significantly higher ablation tempera-
tures, but is only weakly-reflected in the ablation
curves.

As an example, single-pulse ablation of polyimide
is analyzed with the method of moments.
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