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Abstract. A simplified model of plume expansion into am-
bient atmosphere is presented which is based on the laws
of mass, momentum, and energy conservation. In the course
of expansion, the energy is redistributed between the ther-
mal and kinetic energies of the plume and (internal and
external) shock waves (SW). The expansion is described
by ordinary differential equations for the characteristic radii
(contact surface, position of the SWs). The initial stage
is similar to inertial expansion into vacuum, with radius
R∝ t. Internal SW propagates inwards from the contact
surface. Later expansion follows a point-blast model with
R∝ t2/5. Here the homogenized plume is decelerated and
heated because of the counter-pressure of the ambient gas,
which forms external SW. At a certain distance from the
target, the plume stops (and even contracts), while exter-
nal SW weakens and detaches from the contact surface.
Analytical formulas for the transitional stages of expansion
are discussed, and theoretical predictions are compared with
experimental results of laser ablation of steel and YBCO
in Ar.

PACS: 47.40.-x; 52.50.Jm; 42.62.-b

The dynamics of plume expansion is important for the pulsed-
laser deposition (PLD) process and nanocluster formation.
The expansion into vacuum can be described as self-similar
and adiabatic [1, 2]. With higher ambient pressures, a point-
blast model [1, 3] can be applied. At a certain distance from
the target, the plume stops, while an external shock wave
(SWe) weakens and detaches from the contact surface; later it
degenerates into asound wave.

The turnovers between these regimes have been studied
numerically [4–6], but there are no satisfactory analytical
formulas for thetransitional stages. The drag model in [7]
uses phenomenological fitting parameters. In [8] the plume
(and the ambient gas) is subdivided into parts, which experi-
ence different numbers of collisions. Within the gas-dynamic
picture, backscattered material forms an internal shock wave
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(SWi) [9]. This is a convenient framework for the description
of experimentally observed heating of the leading edge of the
plume [7] and plume splitting [10].

The formulas from the theory of explosions [11] have not
been consistently applied to plume expansion. They mainly
refer to the late stage of expansion, in which the plume is ho-
mogenized after SWi has traveled several times between the
contact surface and the center. In [12] the (unrealistic) limit-
ing case, in which all plume mass is in SWi, is considered.
The models [13, 14] do not provide a detailed enough descrip-
tion of the transitional stages. In PLD, the buildup of SWe and
the transition from the free adiabatic expansion to the point-
blast behavior is slow. The proposed model bridges the gap
between the analytical descriptions based on the free vacuum
expansion and the strong-explosion models.

1 Model

We first introduce the notations. A schematic of the model
is given in Fig. 1.

Fig. 1. Central part of the plume obeys free expansion laws. Densities
(solid line) and pressures (dashed line) in the internal and external SW are
assumed to be constant. Densities%i , %e obey corresponding SW condi-
tions, while pressurepc is equal to that at the contact boundaryRc and
is found from the Newton’s law for the external SW. Velocity distribu-
tion (dash-dotted line) is described in the text. Parameters are as in Fig. 2,
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1.1 Notations

r – radial coordinate,t– time. Dot – derivative with respect
to time; prime – derivative with respect tor. ζα denote dif-
ferent dimensionless coefficients. Their values, analytical and
numerical, are given in Table 1.

Free plume (total): R– radius,M– mass,E– total energy,
Ek – kinetic energy,Et – thermal energy,%p – density profile,
pp – pressure profile,νp – velocity profile,k – exponent in the
density profile,νf – inertial expansion velocity,γp – adiabatic
exponent,R0 – initial radius.

Central part of the plume, before internal SW: Mp – mass,
Epk – kinetic energy,Ept – thermal energy. Internal SW:Ri
– position (radius),Mi – mass,Eik – kinetic energy,Eit –
thermal energy,%i – density,pi – pressure profile,νi – vel-
ocity profile, Rc – position (radius) of the contact surface,
pc – pressure at the contact surface.

External SW: Re – position (radius),Me – mass,Eek –
kinetic energy,Eet – thermal energy,Pe – momentum,%e –
density, pe – pressure profile,νRe – gas velocity at the SW
front, Mae – Mach number.

Ambient gas:%g – density,pg – pressure,cg – sound vel-
ocity,γg – adiabatic exponent.

Table 1. Meanings, expressions, and values for different numerical coefficients. The abbreviation n.a. indicates that the information is not available.

Co. Meaning Formula See Values: γp = 5/3, γg = 5/3
Eq. #

Formula Numerical
ζi Plume homo- Radius n.a. (20) n.a. 0.83 (k= 3/2)

genization 0.66 (k= 0)

ζti Time n.a. (20) n.a. 0.87 (k= 3/2)
0.59 (k= 0)

ζM Mass ratio 2π
3 (γg+1)ζ3

i (20) n.a. 3.22 (k= 3/2)
Me/M 1.64 (k= 0)

ζc radii ratio
(

3π1/2
4

γp−1
γp+1

Γ(k+1)
Γ(k+5/2)

)1/3
(20) 0.42 0.41 (k= 3/2)

Rc/R 0.63 0.62 (k= 0)

ζE Kinetic energy of the strong 1
3

((
γg+1

2

)
+
(
γg+1

2

)1/3+
(
γg+1

2

)−1/3
)

(22) 1.114 1.107
external SW,Eek= ζE

2 MeṘ2
c

ζP Momentum of the strong 1
2

((
γg+1

2

)
+
(
γg+1

2

)1/3
)

(22) 1.217 1.213
external SW,Pe= ζPMeṘc

ζA Coefficients in Kinetic 2π
3 ζEγg (23) 3.89 n.a.

the eq. (23) energy

ζB Thermal 2π
9
γp+1
γp−1ζPγg (23) 5.66 n.a.

energy

ζC Initial 2π
3

(
γp+1
γp−1

(
γg+1

2

)2/3− γg+1
γg−1

)
(23) 1.77 n.a.

thermal
energy

ζRSW Equation for the Radius
(

20π
9

(
ζE+ ζP

2
γp+1
γp−1

))−1/3
(24) 0.35 n.a.

free plume-strong
SW transition

ζtSW Time ζRSW

( 3
10

)1/2
(24) 0.19 n.a.

ζRst Equation and Radius
(

2(ζA+3ζb)
ζC(2ζA+3ζB)

)1/3
(25) 0.98 0.39

parameters for the
plume stopping

ζtst1 Time
(

22(ζA+3ζb)
5

ζ5
C(2ζA+3ζB)

2

)1/6

(25) 3.38 n.a.

ζtst Stopping 1
3 B1

(
5
6 ,

1
2

)
ζtst1 (26) 2.52 0.31

time
ζe Ratio Re/Rc n.a. (26) n.a. 1.77

1.2 Qualitative consideration and estimations

The overall energy in thefree plume is conserved. For adia-
batic expansion, the inertial stage is reached fast, where the
νf ∼ (E/M)1/2 and almost all energy is kinetic.

In the presence of the ambient gas, the plume acts as a pis-
ton. Ambient gas is compressed and heated in theexternal
SW. This adjoint mass decelerates the plume. At the same
time, the ambient gas performs work on the plume and heats
up it to a higher temperature than for expansion into the vac-
uum. The heating starts near the contact surface, where the
molecules of the plume collide with the ambient molecules
and are reflected. Theinternal SW is formed there and prop-
agates inwards. This is inseparable from the deceleration of
the plume, as the counter-pressure causes both. As the plume
slows down, the SWi reaches the center, and a significant
part of the plume energy becomes thermal. The SWi reflected
from the center is weaker, i.e., the plume homogenizes.

Because the slowing of the plume is due to the ad-
joint mass, deviations from the free expansion occur when
the mass of SWe is comparable with the plume mass:
Me∼ %gR3 ∼ M. The scales for this turnover are:RSW∼
(M/%g)

1/3, tsw∼ RSW/νf .
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If the thermal energy of the plume is high whenMe> M,
expansion follows the point-blast model:R∼ (Et2/%g)

1/5. As
long as SWe remains strong, the contact boundary and SWe
are close to each other. The expansion is not completely adia-
batic at this stage. The pressure within the (homogeneous)
plume further decreases, and SWe weakens and detaches
from the contact surface. The pressure becomes comparable
to the ambient pressurep∼ (E2%3

g/t
6)1/5∼ pg, the expansion

velocity becomes comparable to the sound velocity in the am-
bient Ṙ∼ (E/%gt3)1/5 ∼ (pg/%g)

1/2, and the initial thermal
energy of the gas involved in SWe becomes comparable with
the initial energy of the plumepgR3∼ E. Any of these condi-
tions yields for the stopping of the contact boundary: distance
Rst∼ (E/pg)

1/3 time tst∼ (E/pg)
1/3/cg. One can see that

Rst/RSW∼ (νf/cg)
2/3. Thus, the strong-explosion model is

relevant only ifνf � cg. Below we develop a unified model
for all these stages, as well as a description for thetransi-
tional regions: free expansion – strong SW, and strong SW –
stopping of the plume.

1.3 Basic assumptions and factors not taken into
consideration

We assume that the equations of gas dynamics can be ap-
plied. We do not consider Knudsen-layer effects; i.e., typical
length scales are bigger than the mean free path. In [8] the
plume is subdivided into parts experiencing 1, 2, or more
collisions. Even with low pressures, it is necessary to sum
5–10 collisions; this justifies our approach.

The contact boundary is treated as an impenetrable reflect-
ing piston, thus mixing between the expanding plume and the
ambient gas isnot considered. In PLD, the initial stage of
expansion is close to one-dimensional (1D), which is not dis-
cussed here. We also do not consider the initial stage of the
sphericalexpansion withR∼ R0. It can be incorporated, but
with loss in the simplicity of the description.

We assume aspherical symmetry. For thesemispheri-
cal expansion,E and M are thedoubledenergy and mass
of the plume.E is the initial energy of theplumeand does
not include losses on the sample heating, evaporation, etc.
The determination ofE and M is a separate problem. Con-
densation, recombination of charged species, excitation of the
internal degrees of freedom, and so forth are not considered.
Their incorporation changes the form of energy conservation.

1.4 Main equations

For a simplified analysis, we use the conservation laws de-
rived from gas dynamic equations, and the assumptions about
the profiles of thermodynamic variables. This results in the
equations for four dynamic variables,Ri , Rc, Re, andR. The
key approximation is that the densities and pressures in SW
do not depend onr.

Free plume expansionfollows from theconservation of its
energy(kinetic plus thermal):

Ek(M, Ṙ)+ Et(E, R, R0)= E . (1)

Mass conservation within the plumewith strongSWi yields
an explicit (nondifferential) equation forRi :

Mp(Ri, R)+Mi(Rc, Ri, R)= M . (2)

Mass conservation in the external SWyields the differential
equation forRe:

Me(Rc, Re, %e(Ṙe))= Mambient(Re, %g) . (3)

The expansion dynamics follows theoverall energy conserva-
tion (differential equation forRc). We indicate the variables
that are important for the corresponding energies.

Epk(Ri, R, Ṙ)+Ept+ Eik(Ri, Rc, R, Ṙc)+ Eit(Ri, Rc, pc)

+Eek(Rc, Re, Ṙc, Ṙe)+ Eet(Rc, Re, pc)= E .
(4)

With a spatially homogeneous pressure within SW,Eit and
Eet are determined by the contact pressurepc. It is found from
Newton’s law for the external SW:

d

dt

[
Pe(Rc, Re, Ṙc, Ṙe)

]= 4πR2
c pc−4πR2

e pg . (5)

If Pe is exact, this equation is exact. It follows from the flow
of momentum through a spherical layer and gas dynamic
equations.pc must be then substituted in (4). The equations
(2)–(4) require the initial conditions:

Ri(0)≈ Rc(0)≈ Re(0)≈ R(0)≈ R0, (6)

Ṙc(0)≈ Ṙc(0)= νf(E,M) ,

R0 being a small quantity. Numerical subtleties related to (6)
will be described elsewhere. Below we write the simplified
expressions for the masses, energies, and momentum for the
different parts of the plume-SW system.

2 Equations

2.1 Free plume

Without an ambient atmosphere, the plume expands adiabat-
ically in a self-similar fashion [1, 2]. Density and pressure
profiles, which satisfy equations of gas dynamics with vel-
ocity νp= Ṙr/R are (with the initial plume at rest):

%p = Γ(k+5/2)

π3/2Γ(k+1)

M

R3

(
1−

( r

R

)2
)k

,

pp= (γp−1)
Γ(k+7/2)

π3/2Γ(k+2)

E

R3
0

(
R0

R

)3γp
(

1−
( r

R

)2
)k+1

.

(7)

HereΓ is the Gamma function. The entropy decreases from
the center ifk< 1/(γp−1). The energy conservation (1) takes
the form:

Ek+ Et ≡ 3

4k+10
MṘ2+ E

(
R0

R

)3(γp−1)
= E . (8)

After a short time, withR of the order of severalR0, the
plume expands inertially, with

Ṙ≡ νf =
√

4k+10

3

E

M
. (9)

In the inertial stage, the thermal energy density is much less
than the kinetic-energy density.
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2.2 Central part of the plume

The central part of the plume, before SWi (r < Ri ), is unaf-
fected by the ambient gas. The mass and the energies within
this part of the plume follow from (7) and can be expressed
via the hypergeometric function2F1:

Mp ≡
Ri∫

0

%p4πr 2 dr = 4

3π1/2

Γ(k+5/2)

Γ(k+1)

(
Ri

R

)3

× 2F1

[
3

2
,−k,

5

2
,

(
Ri

R

)2
]

M ,

Epk≡
Ri∫

0

%p
ν2

p

2
4πr 2dr

=2(4k+10)

15π1/2

Γ(k+5/2)

Γ(k+1)

(
Ri

R

)3

× 2F1

[
5

2
,−k,

7

2
,

(
Ri

R

)2
]

E ,

Ept≡
Ri∫

0

pp

γp−1
4πr 2 dr ≈ 0 . (10)

The last equalities for the energies assume an inertial stage
of expansion. The pressure within the plume can be omitted
from the calculations of the overall energy, as it is much lower
than the plume kinetic-energy density. For this reason, SWi
propagating within the plume is considered asstrongSW.

2.3 Internal SW

The plume material which is reflected from the contact sur-
face forms SWi. We adopt a velocity profile:νi = Ṙcr/Rc.
Such a choice, though not correct nearr ∼ Ri , describes the
homogeneous plume from the moment when SWi reaches the
center. The details of the velocity profile do not significantly
affect the result. The mass of SWi is given by:

Mi ≡
Rc∫

Ri

%i4πr 2 dr = 4π

3

(
R3

c− R3
i

)
%i

=4π

3

(
R3

c− R3
i

) γp+1

γp−1
%p(Ri) . (11)

Here, the density%i is assumed to ber-independent and re-
lated to%p(Ri) via thestrong-SWi condition.%p(Ri) is given
by (7) with r = Ri . With Mp from (10) andMi from (11), the
mass conservation (2) is given by:(Ri

R

)3

2F1

[
3

2
,−k,

5

2
,

(
Ri

R

)2
]
+ γp+1

γp−1

(
R3

c− R3
i

R3

)

×
(

1−
(

Ri

R

)2
)k
 4

3π1/2

Γ(k+5/2)

Γ(k+1)
M = M .

(12)

This equation defines the position of SWi,Ri . With νi =
Ṙcr/Rc and%i[%p(Ri)], the energies are:

Eik ≡
Ri∫

Ri

%i
ν2

i

2
4πr 2dr = 2π

5
%i Ṙ

2
c

(
R5

c− R5
i

R2
c

)
= 2

5π1/2

× γp+1

γp−1

Γ(k+5/2)

Γ(k+1)

(
R5

c− R5
i

R2
c R3

)(
1−

(
Ri

R

)2
)k

MṘ2
c ,

Eit ≡
Ri∫

Ri

pi

γp−1
4πr 2 dr = 4π

3

(
R3

c− R3
i

) pc

γp−1
. (13)

We assume that when SWi reaches the center, the plume be-
comes homogeneous. In reality, SWi travels several times
between the center and the contact surface. At this stage it
weakens [11], and the assumption of a homogeneous plume is
not a bad one [4, 6].

2.4 External SW

The ambient gas compressed by the expanding plume forms
SWe. We approximate the velocity in this region by a linear
function: betweenṘc at Rc, andνRe at Re. νRe and the (con-
stant) density in SWe are found from the condition at the front
of SWe:

νRe =
2Ṙe

γg+1

(
1−Ma−2

e

)
,

%e= γp+1

γp−1

(
1+ 2Ma−2

e

γg−1

)−1

%g, Mae≡ Ṙe

cg
. (14)

The gas in SWe originally occupied the volume currently
encompassed byRe. If R0� Re, the mass conservation (3)
becomes:

Me≡
Re∫

Rc

%e4πr 2dr = 4π

3

(
R3

e− R3
c

)
%e= 4π

3
R3

e%g . (15)

This is a differential equation forRe: With %e taken from
(14) we can resolve it foṙRe and also findνRe:

Ṙe= cg

(
1− γg+1

2

(
Rc

Re

)3
)−1/2

, νRe = Ṙe

(
Rc

Re

)3

.

(16)

The energies of SWe are given by:

Eek≡
Re∫

Rc

%e
ν2

e

2
4πr 2 dr = 4π

3

%g

6

(
R3

eṘ2
c+ R3

c ṘcṘe+ R6
c

R3
e

Ṙ2
e

)

Eet≡
Re∫

Rc

pe

γg−1
4πr 2dr − Eet ambient

= 4π

3

(
R3

e− R3
c

) pc

γg−1
− 4π

3
R3

e
pg

γg−1
. (17)
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The last expression forEek is an approximation, with an ac-
curacy of about20% as long asRe/Rc < 2. Eet is theexcess
thermal energy in the SWe. The subtraction of the ambient
thermal energy is essential for the description of plume stop-
ping. Within similar approximations, the momentumPe is:

Pe≡
Re∫

Rc

%eνe4πr 2 dr = 4π

3

%g

2

(
R3

eṘc+ R3
c Ṙe

)
. (18)

This allows one to find the pressurepc from (5), which then
can be substituted into (13) and (17).

pc≡ Ṗe

4πR2
c
+
(

Re

Rc

)2

= %g

6R2
c

d

dt

[
R3

e Ṙc+ R3
c Ṙe

]+(Re

Rc

)2

pg .

(19)

Note that the first equality is this equation isexact.

3 Results and discussion

The temporal behavior of radiiRi, Rc, Re, and R obtained
from the numerical solution of (1)–(6) is shown in Fig. 2. It
is instructive to study this picture in conjunction with Fig. 3,
in which the transformation of energies between the plume
and SWs is shown. One can see how the initial inertial expan-
sion R∝ t slows down because of snow-plowing of ambient
gas in the SWe. SWi is simultaneously formed, and initially
it propagates close to contact surface. At this stage, all en-
ergy is in the kinetic energy of the (almost free) plume. With
Me∼ M, SWi becomes wider, moves inward, and reaches
the center; it already possesses noticeable percentage of ki-
netic energy. Later, thehomogeneousplume is characterized
by Eik andEit . Simultaneously, kinetic and thermal energy of
SWe builds up; laterRc andRe propagate close to each other
according to point-blast law:R∝ t2/5. Here, thermal energy
is mainly within the plume, while kinetic energy is mainly
within the SWe asMe� M. The plume is not completely
adiabatic at this stage. Though here we describe this by the

Fig. 2. Dynamics of plume expansion in dimensionless variables.Dotted
line: free plumeR; dash-dotted line: internal SW Ri ; solid line: contact
boundary Rc; dashed line: external SW Re. Dimensionless coefficients,
which characterize turnover and stopping points (for highvf/cg ratio) are
given in Table 1. Parameters:γp = 5/3, (γg = 5/3, k= 1/(γp−1) = 3/2.
Free-plume expansion velocity is such that (vf/cg)

2= 103

Fig. 3. Redistribution of kinetic and thermal energies (indexesk and t, re-
spectively) between the plume and external SW in the course of expansion.
All energies are normalized to initial energyE. Solid lines: central part of
the plume (Epk and Ept). Epk is small everywhere.Dash-dotted lines: in-
ternal SW, later the whole homogenized plume (Eik and Eit ). Dotted lines:
external SW (Eek and Eet). Parameters are as in Fig. 2

averaged description, in reality it is due to oscillating SWi. As
long as SWe remains strong, all energies are almost constant.
The width of the SW region depends on the single parameter
νf/cg. However, even for rather high initial velocityνf used in
Figs. 2 and 3, the finite pressure of ambient gas soon results
in the stopping of the plume, accompanied by its additional
heating. The SWe detaches from the contact surface and be-
comes a sound wave (Re approaches slope 1 in Fig. 2). At this
stage,Eek naturally decreases, whileEet increases. After the
stopping point, the model does not work, because of inade-
quate description of the velocity distribution in the detached
weakSWe. Below we discuss simplified expressions for dif-
ferent transitional stages.

3.1 Homogenization of the plume

After the SWi reaches the center, we treat the plume as homo-
geneous. All of the plume is then described as “internal SW”.
This happens when the mass of SWe becomes comparable
with that of the plume, as SWi develops because of the pres-
ence of ambient gas. Thus,Ri = 0 occurs near the turnover
between free expansion and strong-SW propagation regimes.
We introduce several dimensionless coefficients, which char-
acterize the pointRi :

Ri = ζi

(
M

%g

)1/3

, ti = ζti

(
M5

E3%2
g

)1/6

, ζM ≡ Me

M
, ζc≡ Rc

R
,

(20)

ζc is found analytically from (12) with the first termMp = 0,
and Ri = 0. The pointRi = 0 can be found graphically. One
can draw the lineζcR using the initial slope of expansion;
its intersection with the (measured)Rc dependence yields the
time (andRc) whenRi = 0.
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3.2 Homogeneous plume, strong external SW

After the homogenization, the expansion equations can be
simplified. If one is not interested in the internal structure of
the plume, this is a good approximation even at the initial
stage. ForstrongSWe, (16) yields:

Re=
(
γg+1

2

)1/3

Rc . (21)

Substituting this into (17)–(18), we obtain:

Eek= ζE
4π

3
R3

c%g
Ṙ2

c

2
, Eet= 4π

3

R3
c

2

(
pc− γg+1

γg−1
pg

)
,

Pe= ζP
4π

3
R3

c%gṘc . (22)

The coefficientsζE and ζP are slightly bigger than 1 as
Re> Rc. More detailed consideration yields similar expres-
sionsζE, ζP ∼ 1. This holds even with%e 6= const. Using (22)
for the pressurepc in (19), substituting into the energy conser-
vation (4), and rearranging, we get:(

3

10
M+ ζA

γg
R3

c%g

)
Ṙ2

c+
ζB

γg
Rc%g

d

dt

[
R3

c Ṙc
]+ ζCR3

c pg= E .

(23)

Substitution p(Rc) = dRc/dt results in a linear equation
f(Rc)dRc= dt. The integration cannot be carried out, how-
ever. Below we study two transitional regions.

3.3 Free expansion–strong-SW transition

In the region wherepc� pg, the last term in the l.h.s. of
(23) is unimportant. WithRc ∝ (t− t0)n ⇒ R3

c Ṙ2
c = (4−

1
n)Rc

d
dt

[
R3

c Ṙc
]
; n changes fromn = 1 at the initial stage

of expansion ton = 2/5 at the strong-SW stage. Initially,
terms involving R3

c are small in comparison withMṘ2
c

anyway. If we assumen ≈ 2/5, the solution of result-
ing equation can be expressed via the incomplete beta
functionB:

τ =− 1

3
B−R3

(
1

3
,

3

2

)
, Rc≡ ζRSW

(
M

%g

)1/3

R,

r ≡ζtSW

(
M5

%2
gE3

)1/6

τ . (24)

3.4 Stopping distance

With pc∼ pg in the course of expansion, the plume stops, be-
cause of the last term in (23). Though SWe is not strong at this
stage, (23) qualitatively describes the way the plume deceler-
ates. In the stopping region, kinetic energy of the plume (first
term in brackets in (23)) can be neglected. Then (23) can be
simplified, and its solution can be written as:

τ = 1

3
BR3

(
5

6
,

1

2

)
, Rc≡ ζRst

(
E

pg

)1/3

R,

t ≡ ζtst1

(
E

pg

)1/3
τ

cg
. (25)

Within this approximation, the plume stops at:

R = 1, τ = 1

3
B1

(
5

6
,

1

2

)
≈ 0.75 . (26)

Thus, stopping distance is characterized byζRst, and stop-
ping time byζtst ≈ 0.75ζtst1. The values ofζRst andζtst (see
Table 1) foundnumericallyare significantly lower, as (weak-
ened) SWe occupies a much larger volume than that assumed
by the (21) and simplified equation (23). (Its radius isζe times
bigger than the contact surface).

3.5 Comparison with experiment

Figure 4 shows the results obtained with steel and
YBa2Cu3O7−x (YBCO) with different Ar pressuresp and
laser energiesE. A KrF Lambda Physics excimer laser
(wavelengthλ= 248 nm, tFWHM ≈ 30 ns), spot size (top hat)
(2w ≈ 1 mm) was used. The visible plume boundary was
measured by a Photometrics gated ICCD camera. Agree-
ment between theory and experiment was found to be good,

Fig. 4. Experimental data (symbols) for steel and YBCO in dimensionless
variables.Solid linesare calculated withvf/cg = 100 for steel andvf/cg =
200 for YBCO. Other parameters are as in Fig. 2
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though virtuallyno fitting parameterswere used. The mass
of the plume was taken from the expansion velocity at low
pressures. One can clearly see the free expansion–strong-SW
transition and stopping point. Their positions (especially for
stopping) are in good agreement with theory both in distance
and time. Discrepancies may be due to nonspherical geom-
etry of real expansion, losses of energy for sample heating,
plasma radiation, or recombination processes. Deviations,
noticeable for steel at low pressures, may be also due to
difficulties in determination of the plume boundary in this
region.

4 Conclusions

An analytical model for the spherical plume expansion into
the ambient atmosphere has been presented. It covers almost-
free initial expansion, strong-SW propagation in the inter-
mediate stage, and plume stopping. Internal SW describes
heating of the plume edge and plume splitting. Theoretical re-
sults are applied to the analysis of ablation of steel and YBCO
in argon.
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