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Abstract. Pulsed-laser deposition (PLD) of uniform films
with low particulate densities requires uniform target abla-
tion. Optimal conditions are achieved when the target is ro-
tated and simultaneously translated. The rotation, translation,
and laser-pulse repetition frequencies must all be incommen-
surate. The target must be moved symmetrically to the fixed
laser beam. The temporal dependence of the distance be-
tween the beam and the target center must follow the law
x0 ∝ t1/2. The best results are expected for a circular top-hat
beam shape.

PACS: 81.15.Fg; 61.80.Ba; 42.62.Cf

Pulsed-laser deposition (PLD) has become a very popular
technique for the fabrication of thin films of multicomponent
materials [1]. Among the various materials investigated in de-
tail are high-temperature superconductors, compound semi-
conductors, diamond-like carbon (DLC), dielectric, ferroelec-
tric, and magnetic materials, various types of heterostruc-
tures, and organic polymers [1–4]. PLD is very reliable, of-
fers great experimental versatility, is fairly simple, and is fast
– as long as small-area films of up to severalcm2 are to
be fabricated. For these reasons, PLD is particularly suitable
in materials research and development. The strong nonequi-
librium conditions in PLD allow someuniqueapplications.
Among these aremetastablematerials that cannot be syn-
thesized by standard techniques, and the fabrication of films
from species that are generated only during pulsed-laser ab-
lation. With certain systems, the physical properties of such
films are superior to those fabricated by standard evaporation,
electron-beam evaporation, etc.

Besides restrictions with respect to film areas, the ma-
jor disadvantages of PLD are related to particulates on the
substrate and film surface and to inhomogeneities in the film
thickness. These problems arise, in part, from surface rough-
ening and structure formation on the target surface. With
the development of surface structures, e.g. columnar features
which align with the beam, the ablation rate decreases and
the number of particulates increases with the number of laser

pulses [1, 5]. Additionally, with an uneven surface, the direc-
tion of plume expansion will continuously change, resulting
in nonuniform material deposition. It has been demonstrated
experimentally that these problems can be suppressed or even
avoided if the target is simultaneously rotatedand translated
during ablation, as shown in Fig. 1 [1, 5, 6].

In this paper we study the problem of uniform target ab-
lation theoretically, i.e. we determine the relative motion be-
tween the target and the laser beam that providesuniform
ablation of the target.

Fig. 1. Surface structures which align with the incident laser beam, e.g.
columnar structures (cones), can be suppressed by simultaneous rotation
and translation of the substrate with frequenciesωr andωt , respectively. If
the translation is symmetric with respect to the incident laser beam, each
target site is ablated from opposing incident angles

1 Model

Let us first ignore the nonlinear dependence of the ablation
rate on laser fluence. In this case, uniform ablation of the tar-
get is achieved if the (average) exposure provided by the laser
beam is the same for all target points. In the laboratory sys-
tem, the translation of the target is described by the vector
R(t)which is a periodic function of frequencyωt (Fig. 2). The
position of the laser beam with repetition frequencyωl and
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Fig. 2. Schematic picture of the reference frame (xt , yt ) that rotates with
the target with angular frequencyωr . The movement of the target center is
described byR(t), which is periodic with angular frequencyωt . In the lab-
oratory system (x, y) the center of the laser beam is positioned at a point
b. L is an arbitrary point within the laser beam with spatial profileg. The
vectors from the center of the target toL in the laboratory system and the
rotating systems areρ and l

spatial profileg(r−b) is described by the vectorb. The func-
tion g is, e.g., Gaussian, rectangular top-hat, etc. [1]. Consider
an arbitrary pointL on the target. In the reference framefixed
with the target, its position is given byl = (l xt , l yt ). The pos-
ition of the pointL in the laboratory systemis r = R+ρ with

ρ ≡
(
ρx
ρy

)
=
(

cosωr t − sinωr t
sinωr t cosωr t

)(
l xt

l yt

)
≡ M̂ϕl , (1)

whereM̂ϕ is the rotation matrix withϕ = ωr t. ωr is the angu-
lar frequency of target rotation. The laser-beam intensity inL
is

I(L)= jg(r−b)≡ jg(R+ M̂ϕl−b) , (2)

where j ≡ j(t) describes the temporal behavior of the inten-
sity within the beam center. Theaverageexposure inL is
given by the temporal average of (2). This is calculated by
Fourier expansion. The periodic functionj is expanded into
a Fourier series with termsjn1 exp(iωl n1t) wheren1 is an in-
teger. The functiong is first expanded into a Taylor series;
the periodic functionsR and M̂ϕl in each Taylor term are
then expanded into Fourier series with terms exp(iωtn2t) and
exp(iωr n3t), respectively. As a result, the productjg in (2)
will contain terms like exp[i(ωl n1+ωtn2+ωr n3)t]. If the fre-
quenciesωl , ωt , andωr are incommensurate, all terms with
n1 6= 0 will disappear upon averaging. Only terms withn1= 0
will remain. The common factor in this sum,j0≡ 〈 j 〉, is the
average intensity. Because〈 j 〉 is a constant, the average of (2)
can be written as

〈I(L)〉 = 〈 j 〉〈g(R+ M̂ϕl−b)〉 . (3)

The average of〈g〉 cannot be expressed in terms of〈R〉, 〈M̂ϕl〉
and b, as g is a nonlinear function of its argument. Equa-
tion (3) is a formal solution of the problem for arbitrary beam
profilesg and target movements,R. It is independent of the
angular position on the target.

However, it is impossible to make the average exposure
strictly independent ofl for any simple functionR(t). Nev-
ertheless, we can find an approximate solution which yields
analmostconstant average exposure at each target site. This
solution will now be derived.

Henceforth, it is more convenient to consider the center of
the target as fixed, and the laser beam as scanned with fre-
quencyωt . Let us now choose a coordinate system that has
its origin in the target center and which doesnot rotate with
the target. Because the result of (3) will be the same for all
j(t) which yield the same〈 j 〉, it is convenient to treat even
pulsed-laser irradiation as cw with a constant intensity〈 j 〉 in
the beam center. A beam of finite size can be considered as
a superposition of infinitesimally small beam elements with
areasdS (Fig. 3). The average power indS is 〈 j 〉gdS. dS
moves with velocityρ̇ with respect to the target center and it
will cross the ring betweenρ andρ+ dρ within the time

dt = dρ/ρ̇ , (4)

whereρ̇ is the radial component oḟρ. During the timedt, the
average exposure (energy per area) within the ring 2πρdρ is

〈dφ(ρ)〉 = 〈 j 〉gdSdt

2πρdρ
= 〈 j 〉gdS

2πρρ̇
. (5)

Fig. 3. Schematic picture of the movement of a vertical laser beam that pro-
vides uniform exposure. The origin of the (nonrotating) laboratory system
is in the target center. An infinitesimal element of the beam,dS, moves
with velocity ρ̇ and crosses the ring betweenρ andρ+ dρ (dashed) with
radial velocityρ̇. The vectorρ1 is directed from the beam centerρ0 to dS.
The dotted circleshows the movement of the beam center which provides
uniform exposure
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Thus, if the productρρ̇ does not depend onρ, i.e., if ρ andρ̇
obey the condition

ρρ̇ ≡ xẋ+ yẏ≡ ρ ρ̇ =C= const(ρ) , (6)

the exposure of the target by the beam elementdSis uniform.
For a finite beam size, (5) must be integrated overdS and
the result becomes quite complicated, as in the general case
the productρρ̇ and its dependence onρ is different for each
beam element. Nevertheless, if (6) is satisfied for each beam
element (the values ofC may differ for different elements),
exposure will be uniform. It turns out that a movement of
thebeam centerρ0(t) for whichall beam elements satisfy (6)
doesnot exist. In order to verify this, we first consider a nar-
row, vertical beam with elementsdS located at (see Fig. 3)

ρ(t)= ρ0(t)+ρ1 , (7a)

whereρ1 is independent of time. In coordinates this can be
written as

(x, y)= (x0(t), y0(t)+ y1) . (7b)

The condition (6) can then be described by

x0ẋ0+ y0ẏ0= C , (8a)

x0ẋ0+ (y0+ y1)ẏ0=C1⇒ y1ẏ0=C1−C . (8b)

If we choosey0= 0 for t = 0 we find

y0= C1−C

y1
t . (9)

Equation (9) should hold for all beam elements with different
y1 andC1. This requires

C1−C

y1
= vy = const (10)

and thusy0= vyt. Integrating (8a) and substitutingt for y0 via
(9) we obtain

x2
0+ y2

0 = 2Ct+ x2
0(0)⇒ x2

0+
(

y0− C

vy

)2

= x2
0(0)+

C2

v2
y

.

(11)

This is the equation of a circle, which is shown in Fig. 3 by the
dotted line. Thus, each element of the narrow vertical beam
with its centerρ0 moving along the circle centered on they
axis, will provide uniform exposure if the movement is such
that the vertical velocity|vy| is constant [see (10)]. This re-
sults in the following statements.

1. If the beam has afinitewidth in thex direction, it is impos-
sible to satisfy (6) for all beam elements, as the elements
lying on thex axis would require rotation around a center
located on thex axis andvx = const, which is incompati-
ble withvy = const.

2. Different beam elements will cover different circular areas
on the target. For example, the central beam element in
Fig. 3, exposes only the region|ymin| ≤ ρ ≤ ymax. Thus,
uniform exposure is achieved only in places where all
these circular areas overlap.

Although one can further consider the movement based on
the rotation described by (10) and (11), we concentrate on the
particular case where the center of rotation tends to infinity,
i.e.C/vy→∞. In this case, the rotation degenerates into a vi-
bration along thex axis. All further equations follow directly
from (8).

ẏ0≡ 0, C1−C= 0, and x0=
√

2C(t− t0) , (12)

wheret0 describes an arbitrary initial time. Thus, a narrow
(vertical) beam with arbitrary intensity distribution alongρ1,
vibrating in perpendicular direction according to (12), will
provide a homogeneous exposure of the target.

2 Results and discussion

With oblique incidence of the laser beam, the target must vi-
bratesymmetricallyto the beam center, i.e., in the positive
and negativex direction (Fig. 1). Only by this means, can the
formation of columnar structures be suppressed. For this rea-
son, we search for periodic motion with periodTt ≡ 2π/ωt in
the x direction. Such motion satisfing (12) can be described
by

x0=
√

2Rt

(∣∣∣∣2t

Tt
−
[

2t

Tt

]∣∣∣∣)1/2

sign

(
t

Tt
−
[

t

Tt

])
. (13)

The square brackets indicate that the round value, i.e., the
integer closest to a given value, should be taken.Rt is the
amplitude of target oscillations in thex direction. With beam
sizeswx,y� Rt , the amplitudeRt is about equal to the radius
of the target. The function (13) is shown in Fig. 4.

Subsequently, we shall discuss numerical simulations
which illustrate the analytical results. Here, we assume a laser
beam offinite size. The laser beam intensity incident onL
is calculated from (2). The frequencies satisfy the condition
ωl : ωr : ωt = 10e : π : 1. The exact values of the frequencies
are unimportant as long as they are incommensurate.

Figure 5 shows the average exposure as a function of
the normalized distance from the target center,ρ/Rt , for the
four different beam shapes indicated in Fig. 6. Thefull curve
corresponds to a top-hat circular beam that is symmetrically
translated along the target diameter according to (13). De-
spite the finite beam size, exposure is quite uniform, apart

Fig. 4. Vibration of the beam center in thex direction as described by (13).
For generality, dimensionless coordinates are chosen
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Fig. 5. Dependence of the (average) target exposure on the (dimensionless)
distance from the target center,ρ/Rt , calculated from (2) and (13). In all
cases, the ratio of frequencies isωl :ωr :ωt = 10e : π : 1. The different beam
shapes employed have thesametotal power. 2wx and 2wy is the size of the
beam in thex and y directions, respectively.Solid curve: top-hat circular
beam withwx =wy = 0.1Rt ; beam center atb= (0,0). Dotted curve: top-
hat square beam withwx = 0.1Rt , wy = 0.1Rt , b= (0,0). Dashed curve:
thin vertical top-hat rectangular beam withwx = 0.01Rt , wy = 0.2Rt , b=
(0,0.2Rt ). Dash-dotted curve: top-hat rectangular beam withwx = 0.1Rt ,
wy = 0.4Rt , b= (0,0.4Rt ); sinusoidal translational motion

from edge effects. The good uniformity is also revealed from
Fig. 6. The small wiggles outside the center are statistical.
The slight elevation near the center is due to peripheral beam
elements that are “too slow” when they cross the target center,
as only the central part of the beam has the real square-root
behavior (13); this results in an increase in laser-beam dwell
time and correspondingly in a slight increase in average ex-
posure. A Gaussian beam of the same size results in almost
the same exposure, except that it is slightly less sharp near
the target edgeρ = Rt . A twofold increase in beam size fur-
ther decreases the slope nearRt . The final result depends on
the exact sizeand shape of the beam. For example, a top-
hat square beam (dotted curve) of the samesize produces

Fig. 6. The density of points shows the exposure achieved with a top-hat
circular beam (compare full curve in Fig. 5). For convenience, the differ-
ent beam shapes discussed within the text are shown near the target center
(x0 = 0) and at the positionx0 = Rt

a significantdecreasein exposure in the target center and
overexposure at a distancewx.

Thedashed curvecorresponds to a line-type vertical rect-
angular top-hat beam with the center shifted bywy along the
y axis. Such a beam provides uniform exposure within the
region 2wy < ρ < Rt . With ρ < 2wy a linear decrease in in-
tensity is observed. Similar behavior is obtained, for example,
for a top-hat elliptical beam of the same area as the top-hat
circular beam. Forwy = 0.2Rt, wx = 0.05Rt this results in
a three-times lower average exposure near the center. If the el-
liptical beam is oriented in thex direction withwx = 0.2Rt
andwy = 0.05Rt, significant overexposure near the center is
observed. Thedash-dottedcurve corresponds to a vertical
top-hat rectangular beam (see also Fig. 6). In this case, the
translational motion wassinusoidalwith the same period and
amplitude as in (13). The beam center was shifted in they di-
rection bywy. Experimentally, such an arrangement provides
rather uniform ablation [5]. Figure 5 shows that exposure is
indeed rather uniform in the central part of the target, but
not near the edge. The uniformity in the central part is some-
what accidential for such a large beam. It results from the
competition of two effects. On the one hand, the sinusoidal
translation is “too slow” near the center, which results in over-
exposure. On the other hand, as with the vertical line-type
beam (dashed curve), underexposure within the center takes
place. With the particular parameters employed, the second
effect is more pronounced. This results in the overall decrease
in exposure towards the center. This is, however, not a general
trend, but it depends strongly on the size and/or shape of the
beam.

The influence of nonlinearities

Up to now, we have assumed that the ablation rate is directly
proportional to the local laser-beam intensity. This would be
a good approximation for (linear) photochemical ablation, but
certainly not for photothermal ablation [1]. This fact, how-
ever, will not significantly change the results. Let us make the
following assumptions:

1. The spatial profile and intensity of laser pulses remain
constant.

2. The laser pulse length,τl , is of nanoseconds or shorter, so
that the rotation of the target can be ignored during the
pulse (ωr Rtτl �wx,y).

Then, the intensity profileg can be recalculated as an abla-
tion rate profilega . For example, if we ignore both radial heat
conduction and screening due to the vapor plume, the local
temperature rise near the ablation threshold is proportional to
the local laser-beam intensity [1]:

T(r, t)−T0= Aαg(r)
cρ

t∫
0

j(t− t1) exp(Dα2t1)

erfc(Dα2t1)
1/2 dt1 , (14)

where D is the thermal diffusivity,α the absorption coeffi-
cient, andcρ the heat capacity per unit volume. Here, con-
stant material parameters have been assumed. The ablated
depth per pulse based on purely thermal evaporation is, near
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threshold,

h(r)≡ h0ga(r)= ν0

∞∫
0

exp
(−Ta/T(r, t)

)
dt . (15)

Here,ν0 is a pre-exponential factor andh0 the ablated depth
within the beam center [1]. Thus,ga is a complicated, but
well-defined, functional ofg. For realistic, i.e. Gaussian,
beam shapes, the exponentiation ofg which entersT in (15)
will result in an almost Gaussian functionga with smaller
size. Significantly above threshold,T(r, t) andga must be cal-
culated for the 1D or 3D ablation problem [1]. If screening
by the plume becomes important during the pulse, a relation
betweeng andga still exists but is not readily determined.

Equations (10)–(13), which are most important for prac-
tical applications, were derived for beams that are much
smaller than the target, at least in one direction. As the nu-
merical simulations show, the results hold, for example, for
beam radiiwx,y ≈ 0.1Rt (see Figs. 5 and 6). For beams of this
size or smaller, the exact shape ofg and/or ga is not crucial,
apart from effects near the center and near the edgeρ ≈ Rt .
In other words, the nonlinear dependence of the ablation rate
on intensity will not significantly change the results discussed
above. More important are incubation effects in weakly ab-
sorbing substrates [1]. Incubation centers accumulate with the
number of laser pulses, and thereby donot allow one to treat
all pulses as identical. Another problem lies in the colum-
nar structures and surface instabilities that result in surface
morphology changes with subsequent laser pulses.

3 Conclusion

Uniform ablation requires simultaneous rotation and trans-
lation of the target. For optimal conditions the translational
motion must be symmetric with respect to the position of
the laser beam. The frequencies of rotation, translation and
laser-pulse repetition must be incommensurate. For an in-
finitesimally small beam, the translational motion along the
diameter of the target must have a square-root dependence on
time. For beams of finite size, the best results are achieved for
a circular top-hat beam shape. A nonlinear dependence of the
ablation rate on laser fluence does not significantly influence
the results.
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