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DRY LASER CLEANING OF PARTICLES 
BY NANOSECOND PULSES: THEORY 
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A model for nanosecond dry laser cleaning that treats the substrate and particle 
expansion on a unified basis is proposed. Formulas for the time-dependent 
thermal expansion of the substrate, valid for temperature-dependent 
parameters, are derived. Van der Waals adhesion, substrate and particle 
elasticity, and particle inertia are taken into account for an arbitrary temporal 
profile of the laser pulse. The characteristic time for the particle on the surface 
system is deduced. This time is related to the size of the particles as well as the 
adhesion and elastic constants. Cleaning proceeds in different regimes if the 
duration of the laser pulse is much shorter or longer than this time. 
Expressions for cleaning thresholds are provided and compared with 
experiments on the 248 nm KrF excimer-laser cleaning of Si surfaces from 
spherical SiO2 particles with radii between 235 and 2585 nm in vacuum. 
Discrepancies between the experimental data and theoretical results seem to 
indicate that nanosecond dry laser cleaning cannot be explained purely on the 
basis of one-dimensional thermal expansion mechanism.  
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1. Introduction 
 
Particle removal by means of dry laser cleaning (DLC) (Zapka, 1991; Tam, 
1991) has grown in importance during the last decade (Park, 1994; Leiderer, 
1998; Heroux, 1996; Bä uerle, 2000). It is used, or consider for usage, in the 
fabrication of printed circuit boards (PCB), in the production of dynamic 
random access memory (DRAM) (SIA, 1994; Kern, 1990), in lithography 
(Teutsch, 1990) and epitaxial growth (Kern, 1993), for the removal of 
contaminations during via hole production (Lu, 1998a), for the cleaning of 
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microoptical and micromechanical components. In damage-free DLC 
expansion of the substrate or particle leads to particle removal. In some 
cases, other mechanisms related to field enhancement and local ablation 
may play a role. Another technique is steam laser cleaning (SLC) 
(Assendel'ft, 1988; Lee, 1991, 1993), which is due to laser-induced 
explosive vaporization of an auxiliary liquid layer. "Ablative" cleaning is 
based on the removal of particles/contaminants by ablation. SLC, though 
more efficient (She, 1999), cannot be applied to hygroscopic materials, and 
is incompatible with many applications where high purity is required, as in 
small-scale optics and nanocluster technology. It is also a multiple-step 
process because of necessary liquid delivery (Halfpenny, 1999). 

In this article we concentrate on dry laser cleaning. With DLC it is 
observed that it is more difficult to remove smaller particles. This has been 
explained by higher specific adhesion forces. However, accurate theoretical 
predictions for the dependence of the cleaning fluence on particle size have 
not been derived. It is not entirely clear which parameters should be 
optimized to improve the cleaning efficiency and decrease the cleaning 
threshold, especially with smaller particles. Usually cleaning forces acting 
on the particles are compared with measured adhesion forces. At the same 
time, nanosecond laser cleaning takes place over very short time scales, 
which -- as opposed to conventional adhesion measurements -- requires the 
consideration of dynamic effects.  

Several models of DLC exist. Accelerations and forces due to thermal 
expansion of the substrate (Tam, 1992; Dobler, 1999) and particles (Lu, 
1997a), elastic deformation of the particles which are compressed by the 
expanding substrate (Lu, 1999), cleaning via generation of surface acoustic 
waves (Kolomenskii, 1998), the influence of hydrogen bonds (Wu, 1999, 
2000), have been considered. The behavior of the particles after the 
detachment and the redeposition has been studied (Lu, 2000a; Vereecke, 
1999). These models employ many inadequate assumptions. Among these 
are: Thermal expansion of the substrate and particle are often treated 
separately and incorrectly. The temporal profile of the laser pulse is not 
taken into account. This assumes infinite acceleration or deceleration of the 
substrate in the beginning or end of the laser pulse. Deformation of the 
substrate and particle, their interdependence and influence of the particle on 
the substrate expansion are not described properly. Adhesion forces are 
treated separately from the elastic forces, which can lead to erroneous 
results. Though the importance of force and energy criteria were mentioned 
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(Kolomenskii, 1998), their regions of applicability are not clearly stated. 
The removal of absorbing particles and elasticity of the substrate (Lu, 1996, 
1997b) was analyzed on the basis of force balance only (Tam, 1992; Lu, 
1997a, 1998b) without taking into account particle movement. The 
temperatures of particles are estimated in a very crude way there. 
Dissipative processes are considered in ref. (Lu, 2000a) but only in the post-
detachment stage. Numerical calculations do not provide formulas relating 
cleaning fluence to laser and material parameters.  

Our goal is to develop a unified description, which will easily 
incorporate the influence of different cleaning mechanisms and 
experimental parameters, and to estimate factors that contribute to DLC, 
without long numerical calculations. Sound related effects that can be 
important in picosecond DLC (Mosbacher, 2001; Leiderer, 2000) and SLC 
(Mosbacher, 1999, 2000), as well as field enhancement effects (Mosbacher, 
2001; Lu, 2000b; Luk'yanchuk, 2000, 2001, 2002, Zheng, 2001) are not 
considered.  
 
2. Adhesion potential and equation of motion 
 
Various forces are responsible for the adherence of particles to a substrate 
(Mittal, 1988, 1995; Visser, 1976). This section introduces an 
approximation that takes into account the Van der Waals (VdW) and elastic 
forces.  
 
2.1. Model expression for VdW-elastic potential 
 
We describe particle-substrate VdW interaction by the energy per unit area 
ϕ (work of adhesion). It can be obtained by the integration of a Lennard-
Jones-like potential acting between two plane surfaces (Muller, 1983). It is 
related to the Hamaker constant H and Lifshitz-VdW constant ς  by  
 

                                             222 64
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Here ε is the equilibrium distance for the force f or energy u (per area) 

between two planes: 
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All macroscopic results depend only on ϕ which can be inferred from 
measurements of the pullout force. We now describe a simple 
approximation, which we will subsequently employ, and discuss its 
applicability. If the centers of two spheres (or a sphere and a plane) are 
moved together by a distance h (see Fig. 1), the energy of the system is the 
sum of the adhesion energy and the elastic energy. The former can be 
approximated by 

ϕπϕπ rhaUa 22 −≈−= .                        (3) 

Here r is the particle radius (reduced radius for the case of two 
particles) and a the contact radius. It is estimated from geometrical 
considerations as a2 ≈ 2rh, and we assume that everywhere in the contact 
region the interaction energy per unit area is - ϕ. We estimate the elastic 
energy from the Hertz contact problem of elasticity theory (Landau, 1986a) 
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Here, the effective Young's modulus Y characterizes the elastic 
properties of the particle and the substrate. Its value is dominated by the 
properties of the softer material, where most of the energy is stored. Adding 
both energies we get the potential and the force acting on a particle in the 
positive h direction, towards the substrate. 

.2,
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This approximation yields equilibrium values of h0, a0 and U0 : 
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Fig. 1. Schematic of the particle-substrate deformation at a given moment of time. 
Solid lines - current boundaries of substrate and particles. Dashed lines - their 
imaginary non-deformed boundaries. Dash-dotted lines - initial position of the 
substrate and the surface of non-heated (but displaced) particle. l - surface 
displacement of the substrate, r - radius of the heated particle, ∆r - particle 
expansion, z - position of the particle center referred to initial substrate surface 
without particle (note, that in general substrate is deformed even before the 
expansion). Overall deformation is characterized by the so-called approach h; hs and 
hp are its fractions that belong to the substrate and the particle. a - contact radius. ε -
equilibrium distance between (plane) adhering surfaces. Arrows indicate positive 
directions for the corresponding quantities. Adhesion potential U = U (h) is also 
schematically shown. For the depicted moment h is bigger than the equilibrium 
deformation h0 (compression stage). 
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The maximum (pull-out, detachment) force is achieved at h = 0 and is 
given by 

ϕπrF 20 = .                        (8) 

The real situation is more complex and has been studied for a long time 
(Hertz, 1881, Bradley, 1932). The contact area in the Hertz problem is twice 
smaller than the geometrical area, a2 = hr. On the other hand, attractive 
forces near the edges and outside the contact area increase a, modify the 
profile of the Hertzian gap, and change elastic deformation. Thus, one has to 
calculate the problem self-consistently (Muller, 1983; Maugis, 1992). 
Relatively compact results (Muller, 1983; Maugis, 1992; Greenwood, 1998) 
as well as the earlier JKR (Johnson, Kendall, Roberts) model (Johnson, 
1971) predict the following: The contact area is bigger than the Hertzian; 
tensile stresses exist near the edges; detachment occurs abruptly (with finite 
contact area) at negative h and has an (small) energy barrier. Nevertheless, 
these models and expression (5) are similar. A comparison of calculated 
potentials is shown in Fig. 2. For somewhat different DMT (Derjaguin, 
Muller, Toropov) model (Muller, 1983; Derjaguin, 1975) the agreement is 
comparable. The following features can be seen: 
• The elastic energy with strong deformation is conveyed correctly, as in 

this region the adhesion energy is negligible.  
• The adhesion part of the energy and pull-out force are linear in radius. 

Expression (8) for F0 coincides with the famous Bradley (Bradley, 
1932) and DMT (Muller, 1983) results and is 4/3 times bigger than in 
the JKR (Johnson, 1971) limit. 

• The functional dependences for important parameters are correct.  
• The total adhesion energy and the difference between the equilibrium h0 

and h at detachment are quite similar. The potential (5) approximates 
the exact potential shifted by the value of h at the detachment point. 

• The contact radius a(h) is conveyed less accurately. For this reason, we 
avoid using it and express everything via the approach h. 

The expressions (5)-(8) should be considered as approximations valid 
within 20-25%. One can also use the measured pull-out force F0 and the 
separation approach h0 as main parameters of potential. In this form, results 
apply also to non-spherical particles. The work of adhesion ϕ is actually 
always calculated from the measured value of F0. All measurable quantities 
can be expressed in terms of h0 and ϕ (or F0, or U0, or ω0 introduced below). 
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2.2. Parabolic approximation 
 
The potential (5) is a smooth function as it is determined mainly by 
macroscopic elasticity. We can linearize the problem, approximating U(h) 
by the parabolic well of the same depth with the minimum at h0. 
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Oscillations within this potential have frequency and period: 
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where m is mass of the particle. The estimations assume r ~ 1 µm and the 
typical values listed in Table 2. Note that the sound velocity 2/1

0 )/(~ ρYv . 
The approximation based on the second derivative of (JKR or DMT) 
potential near the equilibrium point leads to a similar frequency, as can be 
inferred from Fig. 2. 

This frequency is not related to sound vibrations as the particle is 
treated quasi-statically. This is allowed as long as ω0 is much smaller than 
the frequency of the first mode of particle sound vibrations. For the 
estimations we use the expression (Landau, 1986b). 
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This is always fulfilled. As ωsound ∝ r - 1 and ω0 ∝ r - 7/6  this condition is 
almost independent on r.  

Many conclusions follow from the linear approximation. The most 
convenient parameters for the analysis are the pull-out distance from 
equilibrium, h0 and the internal frequency ω0. To increase generality, we 
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also express this frequency in terms of h0 and measured pull-out force or 
total adhesion energy. In this form, subsequent results can be applied to 
other potentials. 
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Fig. 2. Exact and approximate elastic-VdW adhesion potential and contact radius in 
dimensionless variables. Solid line - approximate potential (5). Dash-dotted line - 
exact potential from the eq. (38) in (Muller, 1983). Dashed line - approximate 
contact radius (see Eq. (3)). Dotted line - exact contact radius given below the eq. 
(38) in (Muller, 1983).  
 
2.3. Equation for the evolution of deformation h 
 
When both particle and substrate move, detachment and adhesion are 
determined by the approach h. Let z be the coordinate of the particle center 
and l the surface displacement in the laboratory frame, both counted from 
the initial position of the substrate surface (see Fig. 1). Then h is given by 
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Here all quantities may depend on time: l and r due to the thermal 
expansion of the substrate and the particle, and z due to particle movement. 
The force balance should be written for zm &&  (dot stands for time derivative). 
Rewriting Newton's equation with the force (5) for h instead of z, with the 
help of (14), we obtain the equation for the evolution of h:  

( ) )(21 2/32/1 rlhrYr
m

hh &&&&&&& ++−=+ ϕπγ .            (15) 

Though the term lm &&  can be interpreted as the force of inertia in the 
frame moving with the substrate, and the term rm &&  cannot, both the 
substrate and particle expansion can be treated similarly. All other terms can 
be neglected in the first approximation.  
 
2.4. Damping coefficient 
 
With the small particles and substantial velocities involved, dissipative 
processes may become significant. The importance of damping in Eq. (15) 
is difficult to estimate.  
 
2.4.1. Knudsen viscosity 

The motion of the particle is slowed down by the ambient medium. At 
spatial scales smaller than the mean free path of ambient gas molecules, the 
damping force can be estimated as: 
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Here, kB is the Boltzmann constant, ma is the mass of gas molecules, vT 
their thermal velocity, p the pressure, T the temperature, and N the number 
density of the gas. The force is defined following the method given in 
(Lifshitz, 1981). 
 
2.4.2. Stokes viscosity 

With bigger particles and / or a (thick) liquid layer at the surface, γ can be 
estimated from the Stokes formula: 
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where η is the dynamic viscosity of the ambient, ν the kinematic viscosity 
and ra typical molecular size. Both viscous mechanisms, together with 
thermophoresis, seem to be more important after the detachment, in 
particular for the redeposition problem.  
 
2.4.3. Absorption of sound 
 
The ultrasound generated by the thermal expansion may be strongly 
damped. As an estimate one can use the rate of energy dissipation in the 
sound waves (Landau, 1986c) 
 









−
+

+≈
σ
σ∆ββ

ν
ω

γ
1
1

32

2
0

2
0

2 T
c
vD

v
c .                          (18) 

 
Here D is the thermal diffusivity of the material, c the specific heat, β 

the thermal expansion coefficient, and ωc some characteristic frequency. 
The temperature rise ∆T ~ T. With a small particle size, the situation can 
become even more complicated due to reflection of the sound and 
temperature wave from the boundaries. In any case,  
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where d is some characteristic length, τωτ Dvvrd c ,/,,~ 00 , depending 
on the parameters and geometry. The two terms in brackets are related to 
viscous damping and dissipation by heat conduction due to adiabatic 
temperature variations within the sound wave. Finally, estimation in Eq. 
(19) is performed with the typical values from Table 2. It agrees with 
logarithmic decrements of 10-1-10-3 given in (Gray, 1972). In any case 
expression (19) seems to be smaller than the energy losses due to emission 
of sound. 



N. Arnold, Dry Laser Cleaning of Particles by Nanosecond Pulses: Theory  

 61 

2.4.4. Emission of sound  
 
The particle, which oscillates on the surface with a frequency ω0, emits 
sound into the substrate. This seems to be a primary mechanism of energy 
loss. Dipole approximation from ref. (Landau, 1987) for sound emission 
from a sphere oscillating in a liquid yields the following power: 
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Here, u is the amplitude of the velocity. The rate of loss for the energy E 
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This loss can be smaller as the particle is not completely immersed in 
the substrate material. As a frequency we can use ω0 from Eq. (10). In any 
case all expressions for the damping coefficient are only estimates.  
 
2.4.5. Plastic deformations 
 
With sub-µm adhering particles, stresses near the edge of the contact area 
may exceed the tensile strength of the material leading to plastic 
deformations (Mittal, 1988; Johnson, 1971). In this case, the contact area 
becomes bigger than that used in the Eq. (3) and below. As a result, the 
expression for the adhesive force needs to be significantly modified. 
Another effects can be due to slow formation of covalent bonds between the 
particle and the surface (Wu, 2000). Phenomenologically, the can be 
described as an increase in work of adhesion ϕ. With real particles these 
effects usually become more pronounced with smaller particles, where 
stresses are larger. There are experimental indications that such effects may 
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take place not only with soft polymer particles, but even with relatively hard 
sub-µm colloidal silica particles as well.  
 
3. Thermal expansion 
 
To study dry laser cleaning the thermal expansion of the substrate and the 
particle must be calculated. Their independent contributions are combined 
in Eq. (15). We start with the thermal expansion of the substrate.  
 
3.1. Hierarchy of scales 
 
In the present problem there exists a certain hierarchy of scales. The spot 
sizes typically employed in laser cleaning are rather big. As a result, the 
axial (z) extension of the thermal field is much smaller than its lateral (x-y) 
dimension (laser spot size w0), even with "weakly absorbing" substrates. 

0wll T <+α .                           (23) 

Here lT is the heat diffusion length (Bä uerle, 2000) and lα the absorption 
length. If the sound does not leave the heated region in the axial direction 
during the laser pulse, i.e., if  

                                              00 )( wllv T <+< ατ                           (24) 

the dynamic equations of elasticity must be considered. As long as the 
sound wave is within the laser spot size  

   00 wv <τ                                   (25) 

the problem is one-dimensional. That is, thermal expansion is dynamic, but 
unilateral and only axial displacement uz ≠ 0 exists. If the sound wave 
leaves the heated area in z-direction, but is still within the lateral extension 
of the source,  

                                                00)( wvll T <<+ τα                           (26) 

the expansion is quasi-static and unilateral. This case is most applicable for 
dry cleaning with ns laser pulses. With v0  ~ 10 6 cm/s, α  ~ 10 - 4 cm-1 and w0 

~ 1 cm, this yields 10 - 10 s < τ < 10 - 6 s. Here, quasi-static compressive 
stresses in x-y planes influence expansion in z direction via Poisson ratio. 
When sound leaves the irradiated spot in lateral direction, i.e., with  
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τ00 vw <                                   (27) 

lateral compression relaxes. The elastic problem is again quasi-static, but 
three-dimensional (3D). As long as Eq. (23) holds, heat conduction is still 
1D, which allows one to obtain general results, different from the quasi-
static unilateral expansion. 
 Finally, when the heat diffuses out of irradiated spot, i.e., with 
 

2
00 wDlw T >⇒< τ                           (28) 

 
heat conduction becomes 3D. The result depends on the laser beam profile, 
and universal analytical solutions do not exist.  

Note that with a stationary temperature distribution and a semi-infinite 
substrate the surface displacement is infinite. At big distances from the 
source the temperature rise decreases as 1/r, and the surface displacement 

∫
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∝
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)( dzzTl  diverges. Indeed, a stationary temperature distribution in the 

semi-infinite substrate requires an infinite time and energy. The stationary 
surface displacement for CW irradiation will be determined by the size of 
the specimen, and by the heat exchange with the surrounding. For example 
in ref. (Welsh, 1988), integral expressions for the surface displacement are 
given. These integrals, however, logarithmically diverge at any point.  
 
3.2. General equations 
 
The equations of classical isotropic thermoelasticity (Landau, 1986a; 
Sokolnikoff, 1956; Parkus, 1976) can be written in the form: 
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Here, ρ is the density of the material, u the displacement vector and T the 
temperature difference from the ambient temperature. Y is Young modulus, 
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σ the Poisson ratio, and β the coefficient of volumetric thermal expansion. It 
is three times larger than the coefficient of linear thermal expansion.  
 We employ the heat equation in the simplest form  

QTgradKdivTc += )(&ρ .                            (30) 

Here K is the thermal conductivity, c is the specific heat of the material, 
and Q is the source term. With very short pulses when dynamic (sound) 
terms are retained in Eq. (30), the assumption of infinite speed of heat 
propagation in Eq. (30) is not always valid, and equations (29) and (30) 
should be modified, (Tamma, 1997; Chandrasekharaiah, 1998). However, ns 
laser cleaning can be studied without these details. Likewise omitted are 
effects of high electronic temperature (Anisimov, 1995), shock wave 
generation, etc. This is justified by the non-destructive processing 
conditions required in laser cleaning. 
 We assume the following boundary conditions for equations (29)-(30). 
Firstly, there is no force at the free surface: 
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where stress σik is related to strain via generalized Hook's law: 
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Secondly, we assume no heat losses into the ambient 

00 =
∂
∂

=zz
T .                           (33) 

And finally, with semi-infinite substrate all quantities disappear inside 
the material at z → ∞. 

Though general solutions of such a problem are possible (Sokolnikoff, 
1956; Parkus, 1976), they are not elucidating. For this reason we will 
discuss the most relevant cases.  
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3.3. Unilateral quasi-static expansion 
 
In this case all quantities are independent of x, y and t, and only a z-
component of displacement u is present. For brevity, we will denote it as u 
and use index z for differentiation with respect to z. We introduce the 
coefficient of unilateral thermal expansion 

          
σ
σβ

β
−
+

=
1
1

31 .                      (34) 

The equations and the boundary conditions then reduce to  

 0,,, 101 === ∞→= zzzzzzz uuTuTu ββ ,            (35) 

0,0,)( 0 ==−= ∞→= zzzzzz TTIKTTc &ρ .            (36) 

 
Here I is intensity of laser light inside the material. Integrating Eq. (35) 

over z and using boundary conditions at infinity, we get: 
 

                Tu z 1β= .                      (37) 

One can immediately write 

          ∫
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1)0( Tdzu β .                             (38) 

It is possible to avoid solving the heat equation, even with temperature-
dependent parameters. We differentiate Eq. (37) with respect to time and 
substitute T from Eq. (36): 

      zzz IKT
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β
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Integrating over z and using the boundary conditions, we obtain for the 
displacement vector at the surface.  

         )0()0( 1 I
c

u
ρ

β
−=& .                           (40) 

Finally, we introduce absorptivity A and the transient absorbed fluence, 
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Then, integrating Eq. (40) over t, we obtain the surface displacement 
u(0) < 0. It is negative, as z was directed into the substrate. For the (positive) 
surface expansion l and for the expansion velocity that enter Eq. (15) we 
obtain: 
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Qualitatively, this result is expected, as both the thermal expansion 
and the heat content within the material are proportional to the absorbed 
energy. It can be used even for temperature-dependent parameters. Indeed, 
the thermal conductivity and absorption coefficient, which change strongly 
for some materials, do not enter this expression. The absorption coefficient 
may be non-linear in intensity, etc. With temperature-dependent thermal 
expansion one has to substitute in the elastic equations, in particular in Eq. 
(37): 

        ∫→
T

dTTT
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11 ')'(ββ .                       (43) 

However, the time differentiation of Eq. (37) keeps Eq. (39) valid if 
β1(T) (and β(T)) is a differential coefficient as defined by the Eq. (43). The 
ratio β1/cρ is approximately constant due to the Grüneisen relation (Gray, 
1972; Ashcroft, 1976; Landau 1980) and the result (42) does not change. 
Temperature variations in the Poisson ratio and the Young modulus are 
usually insignificant (Landolt-Börnstein, 1982). As Young modulus does 
not enter the answer, Eq. (42) probably holds also if Y depends on 
temperature, as in the case of polymers.  

Typical surface displacement, velocity and acceleration for an excimer 
laser pulse of the form 

         ( ) 





−=

ττ
ttItI exp0                      (44) 

are shown in Fig. 3. With this definition, the laser fluence is given by φ= I0τ 
and the pulse duration at the full widths at half-maximum by τFWHM ≈ 2.45τ. 
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Fig. 3. Surface displacement l (dashed line), velocity v (solid line) and acceleration 
dv/dt (dotted line) for silicon substrate and typical temporal profile of the laser pulse 
given by Eq. (44). Laser fluence φ = 0.1 J/cm2. Other parameters used in the 
calculations are listed in Table 2.  
 
3.4.  3D quasi-static expansion for finite beams with 1D heat 

conduction 
 
If the condition (27) is fulfilled, the stresses relax outside of the beam area, 
but the heat conduction can still be considered as 1D. The mathematical 
derivation is given in the Appendix A. Replacing the integral in Eq. (A.16) 
by the fluence, as in transition from the Eq. (38) to Eq. (42), we obtain: 
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Although the laser spot size does not enter the formula explicitly, the 

consideration implicitly assumes that stress and displacement disappear at 
infinity. This requires 3D relaxation, which can be treated quasi-statically 
only if Eq. (27) holds.  

This result does not depend on the spatial profile of the laser beam. 
Similar results in the particular case of epicentral displacement for the 
Gaussian beam with surface absorption can be obtained from ref. 
(Prokhorov, 1990), or found in ref. (Vicanek, 1994).  
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Comparing Eq. (42) and Eq. (45), we see that the displacement in the 
latter case is always larger than the unilateral quasi-static one, as  σ < 1/2. 
The reason is that lateral stresses partly relax and the material as a whole is 
"less compressed". Though not all dilatation goes into z direction, overall 
increase in volume still makes the surface displacement bigger than in the 
unilateral case. The transitional stage 00 wv ≈τ  can be treated only 
dynamically. In numerical calculations (Spicer, 1996) one can see the 
unilateral stage and the much slower 3D stress relaxation stage of the 
expansion. 
 
 
3.4.1. Comparison between different approximations 
 
The formulas used in the literature for the thermal expansion of the 
substrate differ in the dimensionless coefficient in expressions such as Eqs. 
(38), (42) and (45). The results are summarized in Table 1. The difference 
between various approximations can easily reach a factor of two. Clearly, 
one should not consider smaller effects, for example related to moderate 
temperature dependences of parameters, unless correct formula is used.  
 
 
Table 1. Coefficient of proportionality between the surface displacement and 
absorbed fluence, that enters (42) and similar quasi-static expressions, and its value 
for representative values of Poisson coefficient.  
 
Approximation 1D linear 

expansion 
1D 
expansion 

3D expansion 
1D heat cond. 

1D incomp 
expansion 

Coefficient in 
Eqs. (42), (45) 3

1  
)1(3

1
σ
σ

−
+  )1(

3
2

σ+  1  

Poisson ratio σ     
-1 1/3 0 0 1 

-1/2 1/3 1/9 1/3 1 
0 1/3 1/3 2/3 1 

1/4 1/3 5/9 5/6 1 
1/2 (incomp.) 1/3 1 1 1 
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3.5. Particle influence on the expansion of the substrate 
 
In some references (Lu, 1997a) for the absorbing particle, (Wu, 2000), for 
the absorbing substrate) the following expression describes the thermal 
stress at the surface. 

TYzz βσ ~ .                                  (46) 

This stress exists if the substrate (particle) is not allowed to expand. In 
reality, the expansion is restricted only by the elasticity and inertia of the 
particle. The latter is not that big due to the small particle size.  
 Let us consider an expanding substrate. The surface displacement 
during a nanosecond pulse is of the order of several nanometers (see Eq. 
(42) and experimental results (Dobler, 1999)). The radius of the particle is 
at least 10-100 times larger. If the particle does not move, expansion results 
in an indentation of depth ~ l over an area ~ a2 ~ lr on the substrate. Such a 
deformation requires a force ~ Ys (lr)1/2l ~ Ysl3/2r1/2 (see ref. (Landau, 1986a) 
or consider elastic part of the force in Eq. (5) with h ~ l). Such a force 
would have resulted in the following acceleration, velocity, and 
displacement of the particle at the end of the pulse: 
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In the first estimation we assumed that the elastic constants of the 

substrate and particle are of the same order of magnitude. This hypothetical 
displacement z>>l as long as  
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For the typical numbers employed in ns laser cleaning (l~5 nm, r~1 µm) 
l.h.s. is about 103, i.e., condition (48) is practically always fulfilled in ns 
laser cleaning, especially with smaller particles. This means that the 
substrate is not appreciably slowed down by the particle. In other words, we 
can treat the influence of the particle on substrate expansion on the basis of 
the quasi-static Hertz problem. This does not mean that the substrate is not 
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deformed. The total deformation in Eq. (15) contains particle and substrate 
parts h = hp + hs (see Fig. 1), which are in relation (Landau, 1986a) 

s

s

p

p
sp YY

hh
22 1

:
1

:
σσ −−

= .                          (49) 

Thus, "soft" substrates will have an indentation of the order of h, 
determined by Eq. (15), but not of the order of l. Note, that though we used 
a geometrical approximation for the contact radius a, Fig. 1 and equation 
(15), are based on a more realistic Hertzian picture. Within the geometrical 
approximation pssp rrhh :: =  and the plane substrate with rs → ∞ is not 
deformed. 

In ps cleaning one has to include the influence of the particle in the 
boundary conditions (31) for the substrate and the elastic problem becomes 
dynamic and essentially 3D even for wide beams. 
 
3.6. Unilateral dynamic expansion 
 
We give here for reference purposes the solution for dynamic expansion 
with free boundary in 1D case with constant parameters. The applicability 
of this solution to laser cleaning requires additional discussion, as the 
boundary not always can be considered as free. The derivation and 
consideration of sound related effects will be presented elsewhere. We 
introduce the longitudinal sound velocity  

)21)(1(
)1(2

0 σσρ
σ
−+

−
=

Yv                            (50) 

and in the same notations as before rewrite Eqs. (29), (31), (32) for the 1D 
case in the form: 

   0,,,)( 101
2
0 ==−= ∞→= zzzzzzz uuTuTuvu ββ&& .                   (51) 

Displacement l defined as in Eq. (42) is (see also (Maznev, 1997)) 

        dzvztzTdttttvTvtutl
tvt

∫∫ −=−=−≡
0

0
011

0
11001 )/,()),((),0()( ββ .      (52) 

This is an obvious generalization of static expression (38). Indeed, with 
v0 → ∞ we recover static result. 
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3.7. Thermal expansion of absorbing particle 
 
The temperature of a small particle with thermal diffusivity Dp is 
homogeneous if Dp t >> r2, i.e., with r ~ 10-5 cm and Dp ~ 0.1 cm2/s, for t >> 
1 ns. If volumetric thermal expansion coefficient of the particle is βp, the 
increase in volume V is given by: 
 

p
p

pppp TrT
S
VrTVV &&&&&

3
β

ββ ==⇒= .                    (53) 

 
Here, S is the surface area of the particle and the last equality assumes 

spherical shape. Temperature evolution of an absorbing particle with 
(quasi-static) heat contact with substrate can be approximated by 

 

                                 )(4 spsap TTaKITcm −−= σ& .                          (54) 

 
where 22 rAr pa ππσ <≈  is the total absorption cross section (for small 

particles diffraction effects should be considered and the expression for aσ  
is quite different (Born, 1980)). Here, a is contact radius, and we used the 
formula (8.2.10) from (Carslaw, 1959) for the flux into the semi-infinite 
substrate from the uniformly heated disk. Indexes p and s refer to particle 
and substrate respectively, Ts being the temperature of the substrate "far 
away from the particle". Combining Eqs. (53) and (54) we obtain for the 
extreme case with no heat contact 
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which shows similarity with Eq. (42) for the substrate expansion. In the 
limiting case with poor thermal contact the material with the biggest thermal 
expansion coefficient provides the biggest contribution to thermally induced 
deformation and elastic forces. The case with the substrate/particle thermal 
contact deserves further consideration and will be presented elsewhere.  
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3.8. Transparent particle heated by the substrate 
 
Another extreme case is the transparent particle, which does not disturb the 
absorption of light. Or, more accurately, it does not alter the temperature 
field. This requirement is less restrictive for small particles, as heat 
conduction smoothes small-scale intensity inhomogeneities during ns 
pulses. Let us assume that the particle/substrate contact is so good that their 
temperatures are equal. This will give us an upper limit for the particle 
temperature. Energetic estimation (7.5.8b) from (Bä uerle, 2000) yields for 
the surface temperature (constant parameters): 
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Here lα and lT are absorption and thermal lengths. Substituting this into 

Eq. (53) we obtain 
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This expression has a similar structure as Eq. (42). The ratio r / (lα+ lT) 

is typically (much) less than one. Thus, particle expansion can be taken into 
account by a replacement βs → βs + C1 βp in Eq. (42), which modifies 
coefficient C in Eq. (74).  
 
3.9. Maximum velocity of ejected particles 
 
Let us now estimate the maximum particle velocity v if the cleaning is based 
on thermal expansion and elasticity. Similar estimations, but not expressed 
in terms of laser fluence, were done in (Lu, 2000a). We neglect the initial 
adhesion energy, assume that the particle does not move during the pulse 
and that all elastic energy is later transformed into kinetic energy (big 
particles or short pulses). Then the energy balance yields: 
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Here we assumed comparable material properties of particle and 
substrate. Including possible expansion of the particle ∆r and using Eqs. 
(42), (55) and (74), we obtain with values from the Table 1 and φa≈1 J/cm2 
an upper estimation: 
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As in most cases l, ∆r << r, the velocity of the ejected particles is 
always rather small. It is even smaller for small particles, as they move as a 
whole during the expansion. Elastic mechanisms yield higher velocities. 
Indeed, the velocity of non-deformable particles cannot exceed that of the 
moving surface given by Eq. (42) or, better by Eq. (74): 

 cm/s1025.0~~ 3×
ρ

β
c
ICz a& .                    (60) 

Results for intermediate particle sizes can be obtained by solving Eq. 
(15) as explained in sections 4,5. If measured particle velocities (Schrems, 
2000) significantly exceed both Eqs. (59) and (60), this is a strong 
indication that other mechanisms are responsible for cleaning.  
 
4. Cleaning threshold 
 
4.1. General threshold conditions 
 
Let us formulate the cleaning condition for the general law of particle 
movement: 

v
h
U

m
hh &&&& =

∂
∂

++
1

γ .                          (61) 

Here v&  in the r.h.s. may include expansion of both substrate and 
particle (see Eq. (15)) or other cleaning forces, while U may include 
capillary effects, etc. We neglect initial and escape velocities, and define 
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0)( UtUU ad −∞==  (difference between escape and initial energies). 

Multiplying Eq. (61) by h&  and integrating we obtain the energy criterion 

∫∫
∞

−
∞

+>
0

21

0

'' dthUmdthv ad
&&& γ  .                         (62) 

The l.h.s. is the (specific) work of the cleaning force, while the second 
term on the r.h.s. is the dissipative loss caused by damping. To write the 
threshold condition in terms of fluence, one has to solve equation of motion 
(61). Some limiting cases allow more general consideration.  
 
4.1.1. Short cleaning pulse 
 
If the pulse is short i.e., τ<<τ0, γ - 1 cleaning force vm &  dominates during the 
action of the pulse. Neglecting damping and potential in Eq. (61) we obtain: 

      0)(,)(
0

0 ≈+≈⇒≈ ∫ ττ
τ

hdtvhhvh && .             (63) 

Thus, energy acquired at the end of the pulse is due to change in h 
(deformation). If damping is week (γ << ω0), cleaning will take place (after 
the pulse) if the accumulated (potential) energy is higher than the 
detachment energy. This is elastic energy cleaning regime. For the potential 
(5) with expansion of both substrate and particle taken into account, this 
results in  
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Last approximation refers to a parabolic potential (9). 

 
4.1.2. Long cleaning pulse 
 
If the pulse is long, i.e., τ >> τ0, one can solve Eq. (61) in a quasi-static 
approximation. Internal oscillations are weakly excited because there are no 
high harmonics in the spectrum of the cleaning force. As a result h is 
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determined by the condition that cleaning force vm &  balances the force from 
the adhesion potential.  

v
h
U

m
&≈

∂
∂1 .                                  (65) 

Thus, to clean, one has to overcome the biggest adhesion force during 
the pulse. This is force (inertia) cleaning regime. For the potential (5) the 
force is maximal with h = 0 and is positive in our notations. This results in: 

 

0maxmax )()( Frlmvm >+−=− &&&&& .                    (66) 

 
Detailed analysis shows that there exists a coefficient C1 <1 in the r.h.s., 

which takes into account weak internal oscillations. Its value depends on the 
pulse shape and γ. The l.h.s. should be positive, i.e., for the mechanism 
based on thermal expansion, detachment occurs in the deceleration phase 
(Dobler, 1999) due to the inertia of the already accelerated particle.  
 
4.1.3. Over-damped movement 
 
If damping is strong (γ >>τ - 1, ω0 ), one can neglect "inertia" h&&  in Eq. (6). 
Then 
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m
vh 11 && γ .                          (67)  

Thus, as with long pulses, one has to overcome the biggest adhesion 
force during the pulse.  
 
4.1.4. Long pulses with steep fronts 
 
Consider a long pulse (τ >> τ0 ), which starts abruptly, so that v rises to vf 
within time tf  << τ0. Then, from Eq. (63) particle "instantaneously" acquires 
"velocity" fvh ≈&  towards the substrate. During the rest of the pulse the 

position h changes weakly. If the kinetic energy associated with h&  exceeds 
that of adhesion, the particle will detach. This is the kinetic energy cleaning 
regime with the criterion: 
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                                                         adf Umv >2/2 .                     (68) 
 

Similar consideration applies for the trailing edge of the pulse. In this 
case the particle acquires the velocity away from the substrate. In other 
words, to produce strong "force" the pulse should not necessarily be short. It 
is enough if it has sharp edges. The criterion (68) is often less restrictive 
than Eq. (66).  

To obtain compact analytical results for the transitional stages we 
consider the following problem. 
 
4.2. Single sinusoidal pulse in parabolic potential without 

damping 
 
Let us neglect damping and use a parabolic approximation for the potential. 
For convenience we introduce h1 = h - h0 and count the potential energy 
from the bottom of the well where h1 = 0. The equation of motion and initial 
conditions become: 

vhh &&& =+ 1
2
01 ω ,                           (69) 

0)0()0( 11 == hh& .                          (70) 

With these notations detachment occurs when h1 < - h0.  
For the sake of generality and simplicity we consider the following 

"sinusoidal cleaning velocity": 

  τω
π
ω

<<−= ttlv 0,)cos1(
2

.                    (71) 

Here, l is the total displacement during the pulse, and τ  ≡ 2π/ω  the 
total pulse duration with τFWHM = π / ω. Parameters l and τ are convenient 
characteristics of the expansion process. For laser cleaning v is proportional 
to the laser intensity and l to the laser fluence, see Eq. (42). Thus, Eq. (71) 
implies similar temporal profile of the laser pulse. Qualitative results are 
similar for any smooth pulse. This model problem retains important features 
of the original formulation. At the same time it allows complete theoretical 
exploration and compact formulas for the main relationships between the 
parameters.  
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Fig. 4. Dimensionless threshold condition for a cosinusoidal pulse (71) and 
parabolic potential (9). Solid line - general threshold condition (73). One can see 
(week) resonance effects. Dashed line - short pulse limit, and dotted line - long pulse 
limit approximations from Eq. (73).  
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where τ0 is the resonant period of the oscillator. As shown in Appendix B, 
the threshold condition reads: 
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Approximate expressions in Eq. (73) are convenient for fast estimations. 
The result (73) is shown in Fig. 4 together with both limiting cases. With τ 
~ τ0 neither of approximations is accurate enough. One can see 
characteristic kinks that occur due to resonance effects. But as the cleaning 
force Eq. (71) contains only one period, these kinks are weak and can hardly 
be observed in experiments. 
 
4.3.  Dependence of cleaning threshold on particle radius and 

pulse duration 
 
Let us rewrite threshold condition (73) in terms of the particle radius r, 
pulse duration τ, and fluence φ. For definiteness we use Eq. (6) for h0  and 
Eq. (10) for ω0. The overall expansion is (see Eqs. (42) and (53)) 
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Here, the first term refers to the substrate and the second to the 

(absorbing) particle without thermal contact. For the transparent particle 
with thermal contact the second term will be of the order of Eq. (57). The 
last expression is a notation used for brevity. The contribution from the 
material with the biggest βA value dominates. C~0.25-1 is dimensionless 
coefficient. We neglect particle influence on the expansion of the substrate, 
i.e., assume that the heat conduction homogenizes the temperature near the 
particle and neglect field enhancement effects (Mosbacher, 2001; Leiderer, 
2000; Luk’yanchuk, 2000, 2002). Rewriting the two limiting cases in Eq. 
(73) in dimensional quantities, we obtain the expressions for the threshold 
fluence: 
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Intermediate regimes for ω0τ ~ 1 can be calculated numerically. The 
expression (73) recalculated into dimensional variables is shown in Fig. 7 
by the dotted line, together with the results of more accurate calculations 
described in section 5.  

The dependence on pulse duration is monotonic -- shorter pulses are 
more favorable for fixed fluence. With pulse durations shorter than the 
resonant period τ0, a further decrease in pulse duration is not advantageous. 
With α v0 τ ≤ 1 one has to consider sound effects in the substrate, which will 
be discussed elsewhere. 

The dependence on particle radius is less trivial. As ω0 and h0 depend 
on r, threshold dependence on r is non-monotonic. There exists an optimal 
radius for a given pulse duration. For this radius the resonant period τ0 is 
close to the duration of the laser pulse τ.  

With big radii, the native period τ0 is long and the cleaning pulse is 
much shorter than one cycle of oscillations. Cleaning proceeds in the 
"elastic energy" regime. Heavy particles almost do not move during the 
pulse. The substrate surface moves much faster than the center of the 
particle. This leads to an increase in elastic energy (compression of 
substrate and particle). Detachment occurs after the pulse, in the first 
backward swing of the (internal) oscillation. This regime (for non-linear 
potential) is shown in Fig. 5 a. For a symmetric parabolic potential the 
elastic energy become positives in the compression stage if l > h0, and this 
yields simplified detachment condition for such a potential. A more accurate 
estimation (64) for non-linear potential does not change the threshold 
significantly. This can be seen also from the comparison of the solid and 
dotted curves in Fig. 7. The r1/3 increase in threshold with radius is due to 
bigger equilibrium value of h0 and higher adhesion energy U0in Eq. (7) 
for bigger particles.  

With smaller particles, the native period becomes shorter than the laser 
pulse duration. The response of the oscillator to the "low frequency" force is 
inefficient. Cleaning proceeds in the "quasi-static" regime, when fast and 
small internal oscillations in h are superimposed on the slow changes in h 
that obey Eq. (65). This regime is shown in Fig. 5b. Let us derive the 
threshold condition for this situation from the general expression (66). For 
the pulse (71) the largest deceleration occurs at 3τ/4, and in notations (74) 
the cleaning condition is: 
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The results (75) and (76) slightly differ because the pull-out force 

F0=(6/5)2πrϕ in parabolic approximation. The strong increase in the 
threshold fluence with smaller particles demonstrates the inefficiency of the 
"force (inertia)" cleaning regime.  

Let us consider kinetic energy cleaning regime (68). The movement of 
the particle for a rectangular laser pulse is shown in Fig. 5c. If intensity 
change at the steep front is If, 
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This can be formally written as a condition for fluence. For example 

assuming If  ≈ φ /τ we get 
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But with steep fronts it is the intensity what is important. Note also 

much weaker dependence of threshold on r as compared with Eq. (76). This 
is crucial for small particles. 

With τ ~ τ0 no simple approximations for the threshold exists. This 
situation is shown in Fig. 6. Together with h and l, the movement of the 
particle center in the laboratory frame z - z0 is shown. In the beginning, 
surface displacement l is faster than the particle movement (compression) 
and later the particle detaches with constant velocity.  
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Fig. 5. Movement of the particle (evolution of the approach h in non-linear potential 
(5)) under the effect of substrate expansion somewhat above threshold. Temporal 
profile of the laser pulse is given by Eq. (44). a) Elastic energy cleaning regime for 
big particle. Laser pulse is much shorter than the period of oscillator 2τFWHM = 0.1τ0 
b) Quasi-static force/inertia regime for small particle. Laser pulse is much longer 
than the period of oscillator 2τFWHM=10τ0. c) Kinetic energy regime for the pulse 
with steep fronts. Rectangular laser pulse is longer than the period of oscillator 
2τFWHM = 10 τ0, while rise/fall time of the fronts tf  << τ0. 
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Fig. 6. Movement of the particle under the effect of substrate expansion. Potential 
and pulse shape as in Fig. 5. Parameters are such, that 2τFWHM = τ0 and cleaning 
threshold is slightly exceeded. Solid line - evolution of the approach h. Dashed line - 
surface expansion l. Dotted line - movement of the particle center z in the laboratory 
reference frame (defined in Eq. (14)) referred to its initial position z0. 
 
5. SiO2 particles cleaned from Si wafers 
 
Let us now study laser cleaning of SiO2 particles from Si surfaces. The goal 
is to compare the predictions of the theory with experimental investigations. 
In order to diminish the influence of humidity and to avoid redeposition the 
experiments were performed in vacuum.  
 
5.1. Experimental 
 
The cleaning of SiO2 particles (Bangs Laboratories, radii 200-2585 nm) 
from (100) Si wafers (Wacker Siltronic) was performed with a KrF excimer 
laser (Lambda Physik LPX 205, wavelength 248 nm, pulse duration 31 ns 
FWHM). The energy of the beam was controlled by an external attenuator 
(tilted quartz plate) and projected with a mask onto the target to a spot of 1 
mm diameter. Such an imaging produces a uniform energy distribution 
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mbar. Particles are deposited onto the sample by spin-coating, which gives a 
high uniformity of the particle density. Optical microscopy and picture 
processing software, which can count the particles and measure their size, is 
used to evaluate the cleaning efficiency. Since the homogeneity of the 
samples is not perfect, a picture of the cleaned area is taken before 
irradiation and is compared with the picture after irradiation. With this 
technique it is possible to see the behaviour of clusters and redeposition of 
the particles. 
 

Fig. 7. Experimental and calculated cleaning fluence as a function of particle radius 
for SiO2 particles on Si. Parameters used in the calculations are listed in Table 2. 
Only expansion of the substrate is taken into account. Circles –  experimental points. 
Solid line - numerically calculated threshold. Dash-dotted line - numerically 
calculated threshold for ten times smaller adhesion. Resonance effects for the 
considered anharmonic potential (5) and realistic pulse shape (44) are absent. 
Dotted line - recalculated into dimensional quantities harmonic approximation (73) 
for the same τFWHM. Dashed line - numerically calculated threshold for "rigged" laser 
pulse (80). 
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5.2. Cleaning threshold vs. radius 
 
Theoretical and experimental results are compared in Fig. 7. The parameters 
used in the calculations are listed in Table 2. Their choice is somewhat 
arbitrary. For example Si is rather anisotropic, vitreous SiO2 does not 
accurately follow the Grüneisen relation, etc. Because it is more difficult to 
take into account thermal expansion of the particle (see section 3), only 
expansion of the substrate is included. This is justified, as expansion of 
fused silica is much smaller than that of silicon (Table 2) and should not 
significantly alter the results. Damping was ignored.  
 
 
Table 2. Parameters used in the calculations. For strongly temperature-dependent 
parameters values for room and highest available temperature are given with 
temperature (in K) indicated in brackets. For weakly varying parameters value at or 
somewhat above room temperature is taken. Some of the elastic properties vary in 
the literature and for crystal may depend on direction. Average values are taken in 
this case. 
 
Parameter  Value(s) Ref. Comments 
Pulse duration τ  ns 12.7  31 τFWHM 
Laser wavelength λ 
nm 

248  KrF laser 

Substrate Si    
Specific heat cs J/gK 0.72 (300) 

1 (1500) 
(Bä uerle, 2000) used value 

Volumetric thermal 
expansion  
coefficient βs K-1 

7.7×10-6 (300) 
13.2×10-6 (1400) 

(Landolt, 1982) used value 

Poisson ratio σs 0.26-0.28 
0.27 

(Flina; Almaz; 
Landolt, 1982) 

anisotropic 
used value 

Young modulus Ys 
dynes/cm2 

1.3-1.9×1012(300) 
1.2-1.8×1012(900) 
1.6×1012 

(Landolt, 1982) 100-111 
direction 
used value 
vs=9.13×105 

cm/s (110) 
Density ρs g/cm3 2.3 (Bä uerle, 2000) used value 
Absorption 
coefficient αs cm-1 

1.67×106 (Bä uerle, 2000) weak α(T) 

Absorptivity As 0.39 (Bä uerle, 2000) weak A(T) 
Melting temperature 
Tm s K 

1690 (Bä uerle, 2000)  
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Table 2. (Continuation) 

 
Parameter  Value(s) Ref. Comments 
Particle SiO2 (fused silica)    
Specific heat cp J/gK 0.72 (300) 

1.22 (1000) 
1 

(Bä uerle, 2000)  
 
used value 

Volumetric thermal expansion  
coefficient βp K-1 

1.65×10-6 (300) 
1.2×10-6 (300) 
1.8×10-6 (500) 
1.4×10-6 (1100) 
1.65×10-6  

(Prokhorov, 
1990) 
(Gray, 1972) 

(300-1300) 
 
 
 
used value 

Poisson ratio σp 0.17 (Goodfellow; 
Weast, 1989) 

used value 

Young modulus Yp dynes/cm2 0.7-0.75×1012 
0.73×1012 

(Goodfellow; 
Weast, 1989) 

 
used value 
vs = 5.9×105 

cm/s 
Density ρp g/cm3 2.2 (Bä uerle, 2000) probably 

smaller 
(Bangslabs) 

Absorption coefficient αp cm-1 1 (Bä uerle, 2000)  
Absorptivity Ap 0.94 (Bä uerle, 2000)  
Melting temperature Tm p K 1873 (Bä uerle, 2000)  
Adhé sion     
LVdW constant  
ςSi-Si=(4π/3)H, eV 
H - Hamaker constant  

6.5-6.76 
6.8-7.2 
6.15 
6.7 

(Visser, 1976) 
(Bowling, 1989) 
(Dahneke, 
1972) 

 
 
 
used value 

LVdW constant  
ςSiO2-SiO2=(4π/3)H, eV 
H - Hamaker constant 

1.7 
1.9-12 
2.33 
1.32 
2 

(Bergström, 
1997) 
(Visser, 1976) 
(Dahneke, 
1972) 
(Heim, 1999) 

 
 
 
assuming 
DMT 
(Derjaguin, 
1975) used 
value 

LVdW constant eV 
ς Si - SiO2  =  (ς Si –  Si   ς SiO2 - SiO2)1/2 

3.66  used value 

Adhesion distance ε cm 1.41×10-8 (Visser, 1976; 
Bowling, 1989) 

rather 
universal 

Work of adhesion ϕ erg/cm2 140  used value 
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We used average parameters for Si and fused SiO2 available in the 
literature and calculated the adhesion between them according to the 
formula (Visser, 1976) 

221112 ϕϕϕ =  .                          (79) 
 

But one has to have in mind, that  
- In the presence of the native oxide the contact is essentially SiO2-SiO2, 

which reduces ϕ by about a factor of two. 
- Several monolayers of moisture trapped in the particle-substrate 

interstice during the spin-on procedure can decrease adhesion by an 
order of magnitude due to screening of VdW interaction by water, 
which has a high dielectric constant. 

- We do not discuss here influence of capillary effects on adhesion. One 
has to have in mind, however, that with elevated temperatures induced 
in laser cleaning, surface tension coefficient significantly decreases, 
making capillary forces less important.  

- Likewise not discussed here is increase in adhesion due to possible 
charge of particles. This can be included into consideration, but is 
usually more important for bigger particles and/or in the post-
detachment stage.  

- Adhesion may increase with the storage time due to formation of 
covalent bonds and possible plastic deformation even for rather hard 
materials. 

- Surface roughness of substrate and/or particle can further change 
adhesion. 
Having this in mind, we present calculations also for the adhesion 

decreased by a factor of 10. The result, and dependence on other 
parameters, can be understood from expressions (75). Though it is more 
difficult to clean smaller particles, experimentally observed thresholds 
(circles) and the slope of φ cl(r) dependence are much lower than theory 
predicts. Even small adhesion cannot explain these findings. What can be 
the reason for such a behavior? 
 
5.3. Role of small oscillations in intensity 
 
One possibility is the "bad quality" of the excimer laser pulse. Typical 
excimer pulses are too long so that the small particles are removed in the 
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inefficient "force" regime. If the pulse contains high frequency components, 
they may significantly reduce the threshold for small particles, despite small 
fluence contained in each "spike". Numerically calculated threshold for the 
rigged pulse of the same total fluence is shown by the dashed curve. The 
rigged pulse had a temporal profile with harmonics characterized by j. 
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Here the integer part {} in the denominator makes the overall fluence 

independent on jmin , jmax and dj, which were taken as jmin = 1.1415, jmax = 5, 
and dj = 0.2718. The surface displacement, velocity, and acceleration are 
shown in Fig. 8. The displacement is virtually the same as for the smooth 
pulse (Fig.3). Velocity (which is proportional to intensity) and especially 
acceleration differ significantly. Short spikes in the intensity may resonantly 
decrease the threshold for small particles by two orders of magnitude.  

Another reason, which seem to be more plausible (Leiderer, 2000; Lu, 
2000b) may be field enhancement by the particles (Mosbacher, 2001; 
Luk’yanchuk, 2000, 2002; Zheng, 2001; Lu, 2000c) or explosive 
vaporization of residual moisture (Fourrier, 2001). 
 
5.4. Suggestions for cleaning experiments 
 
Oscillations of adhering particles may be used to increase efficiency of 
DLC. One can try to utilize possible resonance effects with the aim to 
remove smaller particles and to increase damage-free cleaning window. We 
discuss several possibilities. 

Smooth excimer laser ns pulse is "too long" for sub-µm particles. If it is 
modulated with the frequency that matches internal "adhesion frequency" 
(10) for the particles of given size, one can expect resonance increase in 
oscillation amplitude. Calculations demonstrate that if the overall duration 
of the pulse stays constant, and the period of the oscillations is about one 
tenth of the overall pulse duration, cleaning threshold can decrease by 1-2 
orders of magnitude. Due to the non-linearity of the potential (5), even 
without damping, at near threshold fluences resonance growth "saturates" 
after 5-10 oscillations. Detailed investigation of this effect will be presented 
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Fig. 8. Surface displacement l (dashed line), velocity v (solid line) and acceleration 
dv/dt (dotted line) for the temporal profile of rigged pulse (80) used for the 
calculations of dashed line in Fig. 7. All other parameters are as in Fig. 3. Note 
difference in scale for acceleration as compared to Fig. 3.  
 
elsewhere (Arnold, 2002 a, b).  

Without damping the cleaning effect of the pulse of duration τ = τ0 
(single resonant "push") and longer modulated pulse which includes n 
resonant "pushes" τ = n τ0 is similar if they have the same overall fluence. 
But heating will be lower for the longer pulse, proportionally to 2/1−n  for 
surface absorption (Bä uerle, 2000). Thus, damage threshold will increase 
and the window for damage-free cleaning may widen.  

"Infinitely short" pulse is the most efficient for the given fluence. It is 
more efficient than the modulated pulse of arbitrary duration. But with short 
pulses damage threshold is determined by lα and is much lower than for ns 
pulses (Bä uerle, 2000). One can replace one short pulse with several pulses 
with the fixed delay between them. Mode locked lasers are natural 
candidates for such experiments. If the delay matches internal frequency of 
the oscillations, the cleaning effect will be the same. Damage threshold will 
be determined rather by the overall duration τ of the pulse train, provided 
that lT ~ (Dsτ)1/2 >> lα . Note, that the description of ps laser cleaning 
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requires consideration of sound related effects that become important  with 
α v0 τ < 1 or v0τ /r <1. 
 
6. Conclusions 
 
In this article we have provided a theoretical analysis of dry laser cleaning 
using ns pulses. Expressions for the thermal expansion of the substrate are 
derived and discussed for different situations. The formula for the 1D quasi-
static thermal expansion of the substrate does not require solution of the 
heat equation and is valid over a broad range of temperature-dependent 
material parameters. The expansion of absorbing and transparent particles is 
discussed as well. 

A simple approximation for a combined elastic-VdW potential has been 
suggested. The laser cleaning process is formulated as an escape problem 
from the non-linear potential under the action of cleaning force produced by 
thermal expansion. Expansion of the substrate and the particle are treated on 
a unified basis. Possible damping mechanisms are discussed.  

Two parameters characterize the adhesion potential -- the period of 
oscillations near the bottom of the potential well τ0 and the equilibrium 
deformation (approach) h0. They serve as natural temporal and spatial 
scales. Their analytical dependence on particle size r and material properties 
is provided. Laser pulse duration τ should be compared with τ0 and overall 
thermal expansion l+∆r with h0.  

Formulas for the cleaning fluence φcl in different regimes are derived 
and compared with numerical calculations. In particular, with τ < τ0 (large 
particles) cleaning proceeds in the "elastic energy regime" which reduces to 
the condition l+∆r  > h0. As a result, φ cl  ∝ r1/3. With τ > τ0 (small particles) 
cleaning proceeds in the inefficient "force regime" and φ cl ∝ τ2/r2, which 
favors shorter laser pulses. With τ >τ0, but steep edges of the pulse tf  << τ0, 
cleaning requires that particle kinetic energy exceeds that of adhesion 

0
2 2/)( Urlm f >+ && ∆ . This leads to φ cl ∝ τ /r5/6 for the "kinetic energy" 

regime. 
Comparison with experimental φ cl (r) dependence for SiO2 particles on 

Si surface shows that commonly assumed mechanisms of dry laser cleaning 
do not explain experimental findings. Experimentally observed thresholds 
are too low. Among possible explanations are fast spatial-temporal 
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variations in intensity of excimer (KrF) laser pulse and field enhancement 
effects suggested earlier by other authors. 
 Utilization of resonance effects either by modulation of ns laser pulse or 
employing the train of ps pulses with delay equal to τ0(r) is suggested. 
Developed approach can be applied to the cases when other adhesion forces 
(capillary, electrostatic, chemical bonding, etc.) may dominate.  
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Appendix A. Quasi-static 3D thermal expansion 
 
Here we derive the surface displacement for the semi-infinite substrate z > 
0. The idea is to write equations and boundary conditions for uz and div u 
only (more accurately for some function f introduced below), and to solve 
them by Fourier transform in x-y plane. Henceforth z∂  denotes derivative 
with respect to z, while index z refers to the component of a vector. 
Stationary equation (29) for z component can be written as: 
 

0
21

)1(2
321

1
=∂

−
+

−∂
−

+ Tdivu zzz σ
σβ

σ
∆ u .                (A.1) 

 
 

At the same time, applying div to the stationary equation (29) we get 
 

                                                   0)( 1 =− Tdiv β∆ u .                                  (A.2) 
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Boundary conditions (31) also can be written in terms of div u and uz 
only. They are valid in x-y plane z = 0 and can be differentiated in this 
plane. The following combination does not contain ux and uy separately, and 
can be used as a boundary condition for uz 

 

( ) 0at0
)1(2

==∂+∂−∂+∂
+

=∂+∂ zdivuuuY
zzzzzyyzxxyzyxzx u

σ
σσ .  (A.3) 

 
To deal only with the first order boundary conditions, we exclude zzzu∂  

using Eq. (A.1). 
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Here ⊥∆  stands for 2D Laplacian in x-y plane. Second boundary 

condition is Eq. (31) for normal stress σzz with definition Eq. (32). 
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The variable more convenient than div u is f defined as  

 
Tdivf 1β−= u .                   (A.6) 

 
Rewriting equations (A.2) and (A.1) in terms of f we get: 
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And for the boundary conditions (A.4) and (A.5) at z = 0 and at infinity 

we obtain 
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These coupled equations are solved by Fourier transform in x-y plane. 

There exist subtle requirements, that all quantities (including f, which is a 
difference of two “ good”  functions, see Eq. (A.6)) disappear at infinity and 
can be Fourier transformed. The former property holds in physically 
admissible situations. The latter is more restrictive. It is not satisfied for the 
stationary temperature distribution in the semi-infinite substrate induced by 
a permanent finite source. In this case T~1/r at large distances and Fourier 
transform of displacement uz does not exist. This is the mathematical reason 
why one cannot obtain unilateral expansion (42) as a limiting case of the 
formulas from this appendix. With time dependent temperature distributions 
induced by spatially finite sources present results should be used. 
 The Fourier transform of Eq. (A.7) (taking into account conditions at 
infinity) with wave vector k (length k), results in trivial equation for f, which 
can be immediately solved, and in differential equation for uz 
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Here, tilde denotes Fourier image and f0 ≡ f (z=0). Transformed 

boundary conditions (A.8) look like 
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We find 0
~f  from the first equation and exclude it from the remaining 

boundary condition and the equation for uz. Introducing )0(~)0(~ =≡ zuu zz  
we get the equation for the Fourier image of uz only. 
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This linear equation can be solved in the general case. Expression that 

satisfies condition at infinity is:  
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Coefficient c1 is from the solution of homogeneous equation (decaying 

at z→∞). This solution should be self-consistent, i.e., )0(~)0(~
zz uzu == , 

and it should satisfy boundary condition in Eq. (A.11). This results in: 
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Resolving this couple of equations for c1 and )0(~

zu , substituting β1 
from Eq. (34) and performing integration by parts we find: 
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Let us give for reference purposes the resulting compact expression for zu~  
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These expressions can be useful for dry laser cleaning problem with 

tightly focused beams, or with local field enhancement under the particle. In 
both cases the source term in the heat equation and temperature distribution 
are 3D, but elasticity can be considered quasi-statically. The approach 
developed here may prove useful also for the time-dependent elasticity. 
Similar considerations are known in acoustic studies (Dubois, 1994) with 
more complicated problems, but there numerical calculations were heavily 
involved. Our presentation provides compact, closed form results, especially 
for the measurable surface displacement.  

One can simplify the results for given temperature distribution, or write 
the equation for the Fourier image of temperature from the heat equation 
and relate the displacement directly to the source term (or its Fourier 
image). This will be considered elsewhere. General result for non-
transformed quantities can be obtained if temperature distribution is almost 
1D, but is nevertheless limited in x-y directions. In this case stresses, strains, 
and displacements disappear at x, y → ∞ and Fourier transforms of all 
quantities (in particular displacements) exist. In the last expression for 

)0(~
zu  in Eq. (A.14) ),(~

1zkT  significantly differs from zero only at small k. 
In this region exp (- k z) ~ 1, and Fourier transform can be inverted: 
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This result for surface displacement is valid independently on the spatial 
profile of the laser beam in 3D static elasticity if all stresses relax at infinity 
and heat conduction is 1D in the sense that spatial temperature distribution 
in z-direction is much smaller than in x-y direction. It is not equal to pure 
1D case, when there is no stress relaxation at infinity.  
 
Appendix B. Cleaning threshold with the single 
sinusoidal pulse 
 
The solution of the problem Eqs. (69)-(71) during the pulse is  
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If particle detaches after the pulse, the total energy at the pulse end 

should be bigger than adhesion energy. In other words 
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The situation is more complicated if the detachment occurs during the 

pulse. Turning points for h1 are given by the condition 
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where n is integer number. The value of h1 at these turning points is:  
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Detachment during the pulse occurs if this expression is smaller than - 
h0 for some n, in other words 
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The argument of the sine function (which is always smaller than 2π as 
long as we are within the pulse) should be as close to 3π/2 as possible (then 
the value of sine is close to - 1). It can also be shown, that lower sign should 
be always preferred (numerator is smaller for " - " sign, while denominator 
is always close to "- 1"), This results in the condition 
 

  



 += )1(
4
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where [] denotes the closest integer number. Finally, it can be verified that 
with y < 1 Eq. (B.2) is always smaller than Eq. (B.5), which means that with 
y < 1 particle always detaches after the pulse. For y>1 the situation is the 
opposite and particle always detaches during the pulse, at ω t ≈ 3π / 2 or t/τ 
≈ 3/4, i.e., in the second half of the (symmetric) pulse. Combining these two 
cases, we arrive at the expression (73) in the text. 
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