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Abstract

Dry laser cleaning (DLC) is considered as an escape from an adhesion potential under the forces induced by thermal

expansion. Important temporal and spatial scales are: period of small oscillations t0, and equilibrium deformation h0.

Possible cleaning regimes are discussed. With laser pulse duration t < t0 (large particles) removal is due to elastic energy.

With t > t0 (small particles) cleaning proceeds in the inefficient inertial force regime. If the fronts of the laser pulse are steep

enough, tf ! t0, cleaning occurs when kinetic energy of the particle exceeds that of adhesion.

Utilization of resonance effects by modulation of laser pulse or employing the train of pulses and influence of damping on

these regimes are discussed. Effects of the near field focusing by dielectric spheres and decrease in cleaning threshold due to

three-dimensional (3D) effects are analyzed and compared with the experimental results for SiO2 particles on Si surface.
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1. Introduction

The physical principles of laser cleaning are out-

lined in [1]. In studies of dry cleaning (DLC) one

usually compares cleaning and adhesion forces [2–4].

Recently it has been realized, that ns DLC requires

consideration of dynamic effects [5–7]. Utilization of

resonance effects (resonant laser cleaning (RLC)) was

suggested [8,9]. In [10], the influence of material

parameters and temporal shape of the laser pulses

on DLC efficiency was studied theoretically. In the

present paper, we give an overview of previous results.

Then we discuss the influence of damping on RLC and

the possibilities of experimental verification of parti-

cle oscillations using several pulses with delay.

Finally, we discuss local intensity enhancement

[6,11–13] and resulting three-dimensional (3D) ther-

mal expansion near transparent particle [6].

2. Theoretical framework

Laser cleaning can be formulated as an escape from

the potential under the action of a time-dependent

force [8,9]. Particle with the radius r and a plane

approach by a distance h (see Fig. 1). Approximate

potential and force can be written as

U ¼ �2prhjþ 2
5
�Yr1=2h5=2;

F ¼ 2prj� �Yr1=2h3=2 (1)

Here j is the work of adhesion (over the contact area

2prh) and 1=�Y ¼ 3=4ðð1 � s2Þ=Y þ ð1 � s2
pÞ=YpÞ

characterizes elastic properties of the substrate and
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the particle (index ‘‘p’’). Y is Young modulus and s the

Poisson ratio. Equilibrium values of h0 and U0 are

h0 ¼ 2pj
�Y

� �2=3

r1=3;

U0 ¼ � 3
5
ð2pjÞ5=3�Y

�2=3
r4=3 (2)

Detachment occurs with h ¼ 0 and requires pull-out

force F0 ¼ 2prj. Parabolic approximation to the

potential (1) yields frequency o0 and period

t0 ¼ 2p/o0 of small oscillations

t0 ¼ 51=2ð2pÞ4=3

3

r7r3
p

j�Y2

 !1=6

(3)

This is about 10 ns for r ¼ 1 mm and typical material

parameters.

Let l be the surface displacement in the laboratory

frame. Then Newton equation with the force (1) in the

reference frame fixed with the substrate reads (dot

stands for time derivative and m is the particle mass)

�h þ g _h þ 1

m

@U

@h
¼ �l (4)

The value of damping coefficient g is discussed in

[8,9]. For quasi-static unilateral expansion of the

substrate surface displacement l and velocity are given

by [9]

lðtÞ ¼ 1 þ s
1 � s

bfaðtÞ
3cr

; _l ¼ 1 þ s
1 � s

bIaðtÞ
3cr

(5)

Here fa and Ia are absorbed fluence and intensity, c

and r are specific heat and density of the substrate and

b volumetric coefficient of thermal expansion. Laser

pulse is approximated by

IðtÞ ¼ I0
t

t
exp � t

t

� �
(6)

With this definition f ¼ I0t, maximum intensity

Imax ¼ IðtÞ ¼ I0e�1 and the full-width at half-max-

imum pulse duration tFWHM � 2:45t.

3. One-dimensional (1D) consideration

3.1. Single pulse threshold, three regimes

The model reveals three possible cleaning regimes.

With t ! t0, which corresponds to large particles or

short pulses, particle barely moves during the pulse.

Thermal expansion compresses both the particle and

the substrate, and at the end of the pulse they possess

elastic energy. If it is larger than the total adhesion

energy and if damping is small, this results in ‘‘elastic

energy’’ removal. Because adhesion potential is

almost symmetric near the equilibrium, the particle

is removed in the first backward swing of oscillations

after the pulse, if compression was larger than the

equilibrium deformation.

With t @ t0, which corresponds to small particles

or long pulses, the particle moves with the substrate

and detaches when thermal expansion decelerates at

the trailing front of the pulse. Here cleaning (inertia)

force should overcome adhesion force. Similar con-

ditions hold for strong damping. This is ‘‘force’’

regime, which favors shorter pulses.

If the thermal expansion stops sharply, the force of

inertia becomes very large. This may happen if the

laser pulse has steep fronts, tf ! t0. Cleaning occurs if

kinetic energy acquired by the particle exceeds that of

adhesion.

For parameters of adhesion potential from Section 2

and 1D expansion of the substrate given by Eq. (5) the

results for cleaning fluence fcl can be summarized as

follows:

t ! t0 l > h0 ) fcl / r1=3

t @ t0 �m�lmax > F0 ) fcl / t2=r2

t @ t0; tf ! t0 m_l
2

f =2 > jU0j ) fcl / t=r5=6

(7)

Particle expansion can be included by replacing

l ! l þ Dr [8,9]. Detailed studies of these regimes,

Fig. 1. Simplified schematic of the particle–substrate deformation

characterized by h. Solid lines: boundaries of substrate and

particles. Dashed line: initial position of the substrate displaced

by l. Dotted curve: imaginary non-deformed particle. Dash-dotted

oval indicates localization of elastic energy. Surface energy is

gained over the contact area S.
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numerical coefficients and dependences on the pulse

and material parameters are presented in [10]. Fig. 2

shows calculated thresholds for a smooth pulse and for

a pulse with steep front. Dotted curve demonstrates the

influence of damping. Strong damping increases the

threshold, but does not change the functional depen-

dence on particle radius.

3.2. Oscillations, damping

The existence of internal oscillations in the particle-

on-surface system suggests the usage of resonance

effects. Resonant laser cleaning (RLC) was studied

theoretically in [10]. Crucial question is the value of

damping coefficient g. Physical mechanisms of damp-

ing are discussed in [8,9]. The strongest damping may

be due to the emission of sound waves from the

oscillating region. Fig. 3 shows the calculated thresh-

old for a pulse modulated with 10 oscillations. Even

with appreciable damping, g ¼ 0:2o0, resonant effects

can be seen. If the oscillations become overdamped

(dotted curve), resonant dip in cleaning fluence dis-

appears.

3.3. Train of pulses

Before developing experimental setup for RLC, one

has to verify or disprove experimentally the existence

of particle oscillations. One possibility is to excite

them by a short (sub-ns) ‘‘pump’’ pulse and to apply a

second ‘‘probe’’ pulse with delay td. If the second

pulse arrives in the right moment, it improves clean-

ing. The expected result is shown in Fig. 4. The

horizontal parts of the fcl(td) dependence correspond

to the cleaning by the first pulse alone. The minima

correspond to td � t0, when the pulses arrive ‘‘in

phase’’ and their contributions combine. The threshold

Fig. 2. Three regimes of DLC. In all pictures parameters are the

same as in Table 1 in [10]. Laser pulse is given by the Eq. (6). Solid

curve: tFWHM ¼ 27 ns. Dashed curve: second part of this pulse

(t > t) with the leading front rise time tf ¼ 100 ps. Dotted curve:

damping coefficient g ¼ 0:5o0. Dash-dotted line: large-area

melting threshold.

Fig. 3. Resonance effects. Pulse with the total duration t ¼ 100 ns

is sinusoidaly modulated at 100 MHz (10 oscillations, see inset).

The values of damping coefficient are given in the legend.

Fig. 4. Cleaning by several pulses with delay time td. fcl refers to

a fluence of a single pulse. Parameters used in the calculations are:

Gaussian temporal profile of the pulse with tFWHM ¼ 300 ps,

absorptivity A ¼ 0:7, (this corresponds to a Ti:Sa laser with

l ¼ 800 nm). r ¼ 0:1 mm, i.e. t0 ¼ 1:05 ns. Solid curve: two

pulses without damping. Dashed curve: four pulses. Dotted curve:

two pulses with damping g ¼ 0:5o0.
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decrease in these minima is proportional to the number

of pulses. Even with strong damping (dotted curve) the

first decrease in threshold with delay time can be

clearly seen. The maximum corresponds to the

td � tFWHM. Here, the pulses merge in one longer,

less effective pulse with complex shape.

4. Influence of local intensity and 3D
expansion on cleaning

Up to now, we considered 1D substrate heating and

expansion unaffected by the presence of the particle. It

has been realized lately [6,11–13], that the particle may

significantly change local intensity distribution. This

will lead to local 3D heating and thermal expansion. In

the first approximation, it should be added to 1D

expansion. The latter remains unchanged, as particles

cover only small fraction of substrate surface. Elastic

disturbance propagates with the velocity of sound v0

and thermoelastic problem near the particle can be

considered quasi-statically for t @ r=v0 � 0:1 ns.

To study cleaning threshold over the large range of

parameters, several simplifications are employed. We

approximate local particle-induced intensity by a Gaus-

sian beam with the effective spot size w and intensity in

the center ImBMI0. Here I0 is the intensity of the

incident light and M intensity enhancement. Note, that

heat conduction smears out fine structure of intensity

distribution. We assume that the contact area between

the particle and the substrate is small and for I in the

cleaning Eq. (4) we use epicentral 3D expansion.

The 3D quasi-static expansion with the stress relaxa-

tion at infinity is discussed in Appendix A. Expression

(A.8) was used in the calculations. Here central inten-

sity Ia(t) absorbed at the surface is assumed. For the

pulse (6) l can be expressed in terms of exponential

integrals. To proceed further we have to know how the

spot size w(r) and intensity enhancement M(r) change

with particle radius. To obtain compact estimations, we

consider in Appendix B two simplified cases: geome-

trical optics and dipole approximation. Formulas (B.5)

for w(r) and (B.4) for M(r) were used in calculations.

Though the formulas were derived for transparent

(silica) spheres with refractive index 1:1 < n < 1:9,

the conclusions hold also for non-spherical particles, as

caustics and dipole-plane wave interference are mod-

ified, but still exist in the general case.

Two limiting cases discussed in Appendix B are

shown in Fig. 5. Substrate is at z ¼ r and is not included

in calculations. We are interested in the intensity on the

substrate immediately behind the sphere, not in the

focal intensity. This makes estimations easier, espe-

cially for large spheres, as focal region is much stronger

affected by the spheres’ imperfections, while caustic or

dipole field are only distorted.

Fig. 6 illustrates the relative importance of 1D and

3D effects for the r ¼ 1 mm particle, when the enhance-

ment is strong, Im/I0 ¼ 24:4. As a result 3D tempera-

ture is significantly higher than 1D (with equal

intensities 3D temperature is always lower). The 1D

and the 3D thermal expansions are comparable, but

velocity and acceleration are larger for 3D contribution

due to faster, more transient 3D expansion.

Fig. 5. Influence of transparent sphere on local intensity distribu-

tion. (a) Large sphere r @ l. Majority of rays hitting the substrate

are confined within the caustic cone. (b) Interference between the

plane incident wave propagating into positive z-direction and

dipole radiation from the small sphere r ¼ 0:2l ! l. Refractive

index n ¼ 1:5. Incident wave is polarized along x-direction.

18 N. Arnold / Applied Surface Science 208–209 (2003) 15–22



Fig. 7 summarizes the influence of 3D effects on

DLC. With small sub-wavelength particles (of arbitrary

shape) r < l/2, small dipole moment leads to a sharp

(quadratic, see (B.3)) decrease in excess 3D intensity.

Correspondingly, all 3D contributions become small,

though acceleration decreases not as fast as tempera-

ture, due to different functional dependence of the

acceleration (A.7) in this region (Fig. 7b). Cleaning

of the sub-wavelength particles is most important for

the needs of technology. Field enhancement effects

become increasingly unimportant in this region. Never-

theless, due to high overall intensities in this region one

can expect melting there, both in 1D and in 3D model.

When particle diameter exceeds several l, intensity

enhancement M and w/r ratio approach their geome-

trical values, while effective spot size w grows pro-

portionally to r. Temperature and expansion velocity

increases weaker than intensity. This is related to

lateral heat conduction and to 3D relaxation of stresses

for smaller spots. With very large particles

wðrÞ � 2(Dt)1/2; thermal expansion becomes 1D,

and is described by (15). Here the ratio of all 3D/

lD contributions is determined by the geometrical

optical intensity enhancement (B.2).

Though focusing is stronger for larger particles,

the temperature values near threshold decrease in

this region, due to decrease in threshold fluence.

Experimental results obtained with 248 nm KrF laser

radiation [8] (circles) are much more consistent with

the 3D model. Still, the slope of fcl(r) dependence is

different. The discrepancy may be related to onset of

local ablation observed in the experiments [11,12,14]

and references therein. This is consistent with high

estimated temperatures for small particles (Fig. 7a,

thin solid line).

The 3D temperature has a maximum at r � 60 nm.

As exact values of 3D/lD velocity and temperature

ratios depend on the temporal profile of laser pulse, we

give here approximate formulas. They reasonably

agree with the numerical results shown in Fig. 7b.

v3D

v1D

� 2ð1 � sÞM w2

8Dt
ln 1 þ 8Dt

w2

� �
(8)

DT3D

DT1D

� M
w

2
ffiffiffiffiffiffi
Dt

p arctan
2
ffiffiffiffiffiffi
Dt

p

w

� �
(9)

5. Conclusions

We considered the DLC as an escape from the

adhesion potential under the action of a cleaning force

Fig. 6. Contribution of 1D and 3D effects. Parameters used in the

calculation: particle radius r ¼ 1 mm, wavelength l ¼ 0:248 mm.

Substrate thermal diffusivity D ¼ 0:5 cm2/s, absorptivity A ¼ 0:5,

fluence f ¼ 0:1 J/cm2. (a) Dashed curves: surface displacement l.

Solid curves: surface velocity v. Dotted curves: acceleration vt .

Thin curves refer to 1D, thick to 3D contributions. Subplot (b)

shows temperature rise.

Fig. 7. Calculated influence of local 3D effects on cleaning

threshold. Diffusivity D ¼ 0:32 cm2/s, absorptivity A ¼ 0:39,

which corresponds to a Si at l ¼ 0:248 mm. (a) Cleaning threshold.

Dashed curve: only 1D heating and expansion. Solid curve: 1D and

3D expansions are added. Thin lines: corresponding temperature

rises. Circles: experimental points from [8]. Large arrows indicate

theoretical onset of melting in both models. Subplot (b) shows

contributions of different factors. Solid curve: ratio of expansion

velocities; dashed curve: intensity enhancement M, Eq. (B.4);

dotted curve: ratio of effective Gaussian spot size to wavelength

calculated from Eq. (B.5). Dash-dotted curve: ratio of induced

temperature rises.
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induced by thermal expansion. Apart from pull-out

force F0, the parameters of the adhesion potential

important for DLC are the period of oscillations t0

and equilibrium deformation h0. With laser pulse dura-

tion t < t0 (big particles) cleaning takes place in the

‘‘elastic energy’’ regime. This requires that overall

thermal expansion l > h0 resulting in fcl / r1=3.

With t > t0 (small particles) cleaning occurs in the

‘‘inertial force’’ regime, which requires decelerations

�m�lmax > F0, leading to fcl / t2/r2. With t > t0, but

steep edges of the pulse tf ! t0, cleaning requires that

particle kinetic energy exceeds that of adhesion

m_l
2

f =2 > jU0j. This leads to fcl / t/r5/6. Utilization

of resonance effects by modulation of laser pulse or

using the train of pulses is discussed. Resonant effects

are present even with significant damping. Local inten-

sity enhancement and 3D thermal expansion near the

particle decrease calculated DLC threshold by about an

order of magnitude, but weakly change the functional

dependences. The approach and conclusions remain

valid for non-spherical particles.
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Appendix A. Epicentral surface displacement
in quasi-static 3D thermal expansion

In [9], we derived the expression for the surface

displacement l due to thermal expansion when heating

should be considered as 3D with time-dependent

temperature distribution

~l ¼ b3

Z 1

0

e�kz~TðzÞ dz; b3 � 2
3
bð1 þ sÞ (A.1)

Here, tilde denotes Fourier components of functions

with wavevector k (length k) after transformation in

x–y plane. It is desirable to relate this expression to the

temporal profile of laser pulse to avoid solution of the

heat equation. We use heat equation with constant

coefficients, volume absorption and no heat losses [1].

Temperature is referred to the ambient temperature.

After Fourier transform it reads together with bound-

ary conditions.

_~T ¼ ð~Tzz � k2~TÞ �
~Iz

cr
~Tzjz¼0 ¼ 0; ~T jz!1 ! 0

(A.2)

Here D is the thermal diffusivity and subscript z stands

for differentiation. We differentiate (A.1) with respect

to time and substitute _~T from (A.2). Upon integration

over z one obtains

_~l ¼ b3 �Dk~Tð0Þ �
Z 1

0

e�kz
~Iz

cr

� �
dz

	 


¼ b3

cr
~Ið0Þ � k

Z 1

0

e�kz~I dz � Kk~Tð0Þ
	 


(A.3)

Fourier inversion of the first term yields absorbed

intensity, albeit with somewhat different coefficient

than in 1D case. For further simplifications we assume

Bouguer absorption with absorption coefficient a.

Then ~Tð0Þ can be found from the Eq. (A.2) by sub-

stitution ~T ¼ ~T1e�Dk2t. This removes the term with k2

in the RHS and Green’s function formulas for the 1D

heat equation [1] can be applied. This results in

_~l ¼ b3

cr

	
a

aþ k
~Ið0Þ � Kk

a
cr

Z t

0

eDða2�k2Þt1

erfcða
ffiffiffiffiffiffiffi
Dt1

p
Þ~Ið0; t � t1Þ dt1



(A.4)

The integration can be carried out for constant inten-

sity, but the inversion of Fourier transform is still

problematic. Compact formulas can be obtained for

surface absorption a ! 1 and Gaussian beam with

the spot size w. Then eDa2t1 erfcða
ffiffiffiffiffiffiffi
Dt1

p
Þ!1=a

ffiffiffiffiffiffiffiffiffiffi
pDt1

p

and inversion can be carried out. For epicentral dis-

placement r ¼ 0.

_l ¼ b3

cr
IaðtÞ �

Z t

0

_Iaðt � t1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ w2=4Dt1

p dt1

" #

¼ b3

cr

Z t

0

_Iaðt � t1Þ 1 � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ w2=4Dt1

p
 !

dt1

" #

(A.5)
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The first expression required integration by parts. In the

last expression, we replaced IaðtÞ !
R t

0
_Iaðt � t1Þ dt1.

One can distinguish two limiting cases. With thermally

large spots Dt=w2 ! 1, 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ w2=4Dt1

p
! 0 and

_l � 2ð1 þ sÞ
3

bIaðtÞ
cr

(A.6)

This recovers 1D result with 3D stress relaxation

discussed in [9]. With small spots, Dt=w2 @ 1, the

region near t1 ¼ 0 dominates the integral (A.5). With
_Iaðt � t1Þ � _IaðtÞ the leading term yields

_l � 2ð1 þ sÞ
3

b_IaðtÞ
cr

w2

4D
arcsinh

2
ffiffiffiffiffi
Dt

p

w

� �
(A.7)

Velocity (and acceleration) decrease with thermal

diffusivity as transient temperature rise is smaller.

In the first expression in (A.5) the integral is mani-

festly positive and therefore _l < b3IaðtÞ=cr. Similar

statement almost always holds for the (absolute value

of) acceleration.

For practical purposes we approximate the kernel in

the last integral (A.5) in a way that is asymptotically

correct for both small and large t1

_l � b3

cr

Z t

0

_Iaðt � t1Þ
1 þ 8Dt1=w2

dt1

	 

(A.8)

This results in approximation for Dt/w2 @ 1 that are

slightly better than (A.7) for intermediate t.

_l � 2ð1 þ sÞ
3

b_IaðtÞ
cr

w2

8D
ln 1 þ 8Dt

w2

� �
(A.9)

Appendix B. Sphere focusing approximations

Exact calculations of the field distribution near the

particle on the surface use numerical methods [11],

analytical Mie solution in free space [6,12] or in the

presence of the substrate [13]. To obtain compact

estimations we consider two simplified cases.

B.1. Large spheres, r @ l, geometrical optics

Let us estimate the intensity on the substrate using ray

tracing and energy conservation. Refracted rays form a

caustic (Fig. 5a). Almost all the rays that reach the

substrate, lie within the caustic cone. We introduce the

incidence angle yi and the refraction angle inside the

sphere yt ¼ arcsin(sin yi/n). Upon second refraction the

ray leaves the sphere at a point with the polar angle with

the z-axis yo ¼ 2yt � yi, and emerges from the sphere in

the direction you ¼ 2yt � 2yi < 0. Maximizing yo(yi)

we find that the caustic crosses the sphere at the angle

yom, given by the condition sin2 yom ¼ ð4 � n2Þ3=27n4.

Corresponding angle of incidence yim, is given by

sin2 yim ¼ ð4 � n2Þ/3. We approximate the spot size

on the substrate by caustic on the sphere

wg � r sin yom ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4 � n2Þ3

27n4

s
(B.1)

Rays that emerge with the angles you < �p=2 propa-

gate backwards and do not contribute to the intensity

on the substrate. This results in 2yt � 2yi ¼ �p/2,

which limits the relevant incoming rays by a condition

sin2 yi;p=2 ¼
1; n <

ffiffiffi
2

p

n2

2n n �
ffiffiffi
2

p� �
þ 2

; n >
ffiffiffi
2

p

2
64

The incident radiation is homogeneous. We assume that

the intensity within the caustic cone is homogenized by

the imperfections of the sphere, reflections from the

substrate, etc. Thus we neglect any interference and

resonance effects. Assuming r0 ¼ r sin yi;p=2 for the

maximal impact parameter of incoming rays, we obtain

for intensity enhancement

Im

I0

� r2
0

w2
g

�
r2 sin2 yi;p=2

r2 sin2 yom

¼ 27n4

ð4 � n2Þ3

1; n <
ffiffiffi
2

p

n2

2n n �
ffiffiffi
2

p� �
þ 2

; n >
ffiffiffi
2

p

2
64 (B.2)

We neglect intensity losses on reflection as they are to

some degree counterbalanced by multiple reflections

within the sphere and from the substrate surface. In

some cases, e.g. with n close to 1 or n > 2 this

approximation is less accurate. One should consider

the caustic spot on the substrate and the rays with

yo < 0 but you < �p/2 widen the actual spot. For the

sake of simplicity, we do not discuss this here.

B.2. Small spheres, r ! l, dipole approximation

Small spheres can be approximated by dipoles with

corresponding polarizability [15]. Using the formulas

N. Arnold / Applied Surface Science 208–209 (2003) 15–22 21



(92.1), (92.2) and considering interference with the

incident plane wave at the back side of the sphere at

z ¼ r, we obtain

Im

I0

¼ 1 þ n2 � 1

n2 þ 1
k2r2

� �2

(B.3)

The size of the spot is wd � r within the range of

applicability of dipole approximation.

B.3. Approximation for all sizes

As we are interested with the excess intensity due to

the presence of the particle we introduce excess

intensity amplification for geometrical (g) and dipole

(d) cases respectively Mg;dBðIm=I0Þ � 1, To span all

sizes, we use the approximation of dipole and geome-

trical enhancement, which smoothly combines both

limiting cases.

M � MdMg

Md þ Mg

(B.4)

For the spot size we employ

w ¼ wd þ Ck2r2wg

1 þ Ck2r2
(B.5)

with

C ¼ n2 � 1

n2 þ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4 � n2Þ3

27n4

s

This choice of C ensures that the transition between

the limiting cases (which happens with Ck2r2 � 1)

occurs when Md � Mg.
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