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Abstract

In this paper, we report our results on the modeling of the optical properties of the bulk-
heterojunction “plastic solar cells”, consisting of a solid-state blend of the conjugated polymer
poly-[2-(3,7-dimethyloctyloxy)-5-methyloxy]-para-phenylene-vinylene and the fullerene Cg
derivative 1-(3-methoxycarbonyl) propyl-1-phenyl [6,6]Cs;. Upon illuminating these cells with
the standard AM 1.5 solar spectrum, the short circuit current can be determined for any given
internal quantum efficiency as a function of the active layer thickness. In addition, the depth
profiles of photoinduced charge generation rates are calculated. Based on the agreement of
this modeling with experimentally determined efficiencies of these solar cells, an internal
quantum efficiency of about 80% has been estimated.
© 2003 Elsevier B.V. All rights reserved.

Keywords: Optical modeling; Plastic solar cell; Absorption; Refractive index; Internal quantum efficiency

1. Introduction

In order to gain a better understanding of the limiting factors for the efficiency of
the polymer/fullerene bulk-heterojunction-based ““‘plastic solar cell”” [1-2], the actual
absorption profile within the photoactive layer of this multilayer device is of
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fundamental interest. The photoactive layer consists of an interpenetrating network
of poly-[2-(3,7-dimethyloctyloxy)-5-methyloxy]-para-phenylene-vinylene (MDMO-
PPV) and 1-(3-methoxycarbonyl) propyl-1-phenyl [6,6]Cs; (PCBM) with a mixing
ratio of usually 1:4 by weight. At the interface between these materials, a fast
electron transfer from the MDMO-PPV to PCBM takes place upon light excitation
[2,3]. Then the respective charge carriers (electrons and holes) are transported within
the two separate materials to the electrical contacts of the solar cell. The
performance of these plastic solar cells based on bulk heterojunctions between the
conjugated polymer donors and fullerene-type acceptors has been reported to be up
to 2.5% at AM 1.5 white light illumination [2]. From reflection measurements, it is
known [2] that for an active layer thickness of about 100 nm used in these devices, the
absorption was estimated to be less than 60% of the incoming light at 460 nm.
Therefore, an increase of the absorption is required to increase the efficiency of the
cells. As the incident photon to collected electron efficiency of this device was
measured to be around 50%, an internal quantum efficiency (absorbed photon to
collected electron efficiency) of about 85% was estimated.

Hence, there is still some potential left for more absorption and thereby a higher
efficiency even without a change of the spectral distribution of the absorption. Thus
the question of an optimized active layer thickness shall be addressed in this paper.
Optical modeling of absorption and photocurrent spectra has already been
performed previously on some (small-molecule) bi-layer heterojunction solar cell
systems. Here the critical issue has been found at placing the electric field maximum
of the light at the interface of the donor and acceptor layers, since only there the
charges are separated in these bilayer junctions [4-7].

Optical modeling has also been performed on classical solid-state semiconductor
solar cells and modules where angular-dependent light trapping by multiple internal
reflections through surface texturing often has to be taken into account [8—15]. Other
papers report on these effects in dye-sensitized nanocrystalline solar cells [16].
Recently, the potential for light trapping in bulk-heterojunction organic solar cells
has been numerically investigated for soft embossed diffraction gratings [17].

We present the results of optical modeling of our whole device by using the
transfer matrix formalism (see e.g. Refs. [18-20]), which is based on the Fresnel
formulas for the several interfaces occurring in the device. The results of the optical
modeling are compared with existing experimental data and show good agreement
for the observed photocurrent.

2. Experiment

MDMO-PPV was provided by Covion (Germany), PEDOT:PSS (poly[3.4-
(ethylenedioxy) thiophene]: poly(styrene sulfonate)) (Baytron) by Bayer (Germany)
and PCBM was purchased from J.C. Hummelen (University of Groningen, The
Netherlands). Films were prepared by spin coating from chlorobenzene solutions of
1:4 (by weight) blends of MDMO-PPV and PCBM as used in our standard plastic
solar cells [1-2]. PEDOT:PPS was spin cast from an aqueous solution with a
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concentration of 0.5% by weight. As a substrate, fused silica cleaned with iso-
propanol in an ultrasonic bath previous to spin coating was used. In order to
determine the optical constants of both layers of the indium tin oxide (ITO) glass
(MERCK, Germany), the transparent ITO was first etched away completely in a
mixture of conc. HNOj, conc. HCI and distilled H,O in a ratio of 1:9:10 by volume
to allow for the determination of the optical properties of the substrate glass alone.
Then the complete ITO glass was measured. Near-normal incidence (7°) transmis-
sion and reflection spectra of the spin cast films on fused silica and of the substrates
were recorded using a Cary 3G spectrophotometer (Varian, Inc., Palo Alto, USA) in
the range between 300 and 900 nm. Organic layer thicknesses have been verified
using a tapping mode AFM (Dimension 3100, Digital Instruments, Santa Barbara,
USA), by measuring the depths of scratches in the film. The fitting of complex model
dielectric functions & = ¢ + i¢” to the transmission and reflection spectra as well as
the determination of the active layer thickness from reflection measurements of a
complete solar cell was performed using the software SCOUT2 (M. Theiss, Aachen,
Germany). The model dielectric functions consist of a constant dielectric back-
ground contributing to the real part of the dielectric function, and of so-called Kim
oscillators [21], which describe the optical absorption for the electronic transitions. A
Kim oscillator allows a continuous shift of the line shape between a Gaussian and a
Lorentzian profile. Once the dielectric functions are obtained, the complex refractive
index fi =n+ 1k is calculated easily from the correspondence of the dielectric
function and the optical constants given by: & = n*> — k? and &’ = 2 nk.

3. Modeling

To model the optical properties of our multilayer system, the so-called Transfer
Matrix Formalism is applied [18-20]. Here the multilayer is treated as a one-
dimensional system in which the amplitude of the electromagnetic field vector is
calculated coherently. Since the electric and the magnetic fields are connected by the
Maxwell equations, it is sufficient to calculate only the electric field component. This
formalism considers two electromagnetic waves, one propagating in positive
direction perpendicular to the interfaces of the multilayer system, and one in the
opposite direction. By traveling from layer A to layer B, the wave undergoes Fresnel
reflection and transmission, while within a layer the propagation leads to some phase
shift of the wave and decay according to the absorption of the material. All, the
reflection, the transmission, the phase shift and the absorption can be described in
terms of the optical constants n and k. The change of phase and amplitude can thus
be written as a 2 x 2 matrix, treating both, the forward and backward propagation
direction. By multiplying these matrices, the change of the electromagnetic field is
obtained for a sequence of layers. Thus the amplitude and phase are known within
the system at any arbitrary point, and by applying the continuity equation for the
energy:

0+divS=0, (1)
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Fig. 1. Schematic structure of the modeled multilayer device. The incoming light (/;,) enters the device and
propagates attenuated towards the aluminum electrode. There it is reflected and the outgoing intensity
(Iout) leaves the device through the glass. Due to the high reflectivity and absorption of the aluminum
electrode, no light leaves or enters from the right side of the device.

with Q =lwe"egEE* and S =1Re[E x H*],

the local absorption within a certain layer can be calculated. Here, w is the angular
frequency of the electromagnetic field, g is the electric permittivity of free space, E
the local (depth-dependent) electric field amplitude, Q and S denote the local time-
averaged absorption and Poynting vector (compare Ref. [22]). While the Poynting
vector denotes the electromagnetic energy flux density, its divergence balances the
optical absorption that is described by the first term. Eq. (1) is valid for non-
magnetic materials in the stationary case.

The program was written using ‘“Mathematica” (WOLFRAM Research,
Champaign, IL, USA) and treats the case of normal incidence of the light. The
optical modeling has been performed for a cell structure as described before [2],
where the light enters through the glass slab, sequentially passing the ITO, the
PEDOT:PSS, and the MDMO-PPV:PCBM blend layer. Then the light is reflected
back from the Al electrode and finally leaves the solar cell partly at the front again
(see Fig. 1). The coherence length of the sunlight is about 800 nm [23]. Thus, in
contrast to the thin layers, the much thicker glass slab (thickness d) was treated
incoherently. Multiple passes through the glass determine the summated intensity
transferred to the glass/ITO interface, calculated as

(1 - Rairglass)e_“d
le—2ad’ (2)

Lgtassito = 1
g 1n1 - RairglassRcel
where Iyjassio is the light intensity in the glass before the glass—ITO interface, Rairglass
is the reflectivity of the air—glass interface, o is the absorption coefficient of the glass
and R denotes the total reflectivity of the glass—multilayer interface calculated on
the basis of the coherent matrix formalism.

4. Results and discussion

In order to model the optical behavior of the solar cell, all optical constants of the
involved layers have been determined previously as described above and published
recently [24]. The absorption coefficients a = 4nk /2, of the polymer, of the fullerene,
and of their mixture are shown in Fig. 2 (1 is the wavelength of the light). Both
materials, MDMO-PPV and PCBM, contribute to the absorption within the blend.
Under standard AM 1.5 solar spectrum irradiation, the contribution of the PCBM to
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the absorption within the blend film (about 57%) is even higher than that of
MDMO-PPV. This was calculated by simply integrating the standard AM 1.5 solar
spectrum multiplied with the respective absorption coefficients of the two materials.

Using Eq. (1), the absorption of light for each wavelength can be calculated for
any depth. Thereby it becomes possible to plot the dimensionless differential
intensity loss Q Az/I;, (per depth Az = 1 nm) within the active layer, as shown in
Fig. 3 for a 100 nm thick layer. For the five different optical wavelengths shown here
the intensity loss varies by about 2-3 orders of magnitude, according to the
differences in the electric field and in their optical absorption. Summation over all
wavelengths yields the charge generation rate profil. Results for four different
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Fig. 2. Absorption coefficients of MDMO-PPV (dotted), PCBM (dashed) and the MDMO-PPV:PCBM
1:4 blend (solid line), calculated from their respective dielectric functions.
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Fig. 3. Fraction of intensity, which is absorbed within 1 nm at a certain depth for several wavelengths,
depicted for an active layer thickness of 100 nm. The quantity is normalized to the incident light intensity.
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photoactive layer thicknesses are presented in Fig. 4, assuming an incident AM 1.5
standard solar spectrum. The thicker the active layer, the lower the average charge
generation rate becomes, while the number of maxima and minima within the profile
increases.

The total absorption within the active layer of the solar cell has been calculated as
discussed above and its spectral dependence is shown in Fig. 5 for a set of different
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Fig. 4. Charge generation rate profiles for four different thicknesses of the photoactive layer. The thicker
the layer, the wavier but also the weaker is the mean charge generation profile.
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Fig. 5. Fraction of absorbed incident light within the MDMO-PPV:PCBM layer of the solar cell for
several layer thicknesses. For comparison, the photon flux of a standard AM 1.5 solar spectrum is shown
as a dotted line (right axis). The PEDOT layer thickness is set to 150 nm.
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layer thicknesses. For comparison, the photon flux of an AM 1.5 standard solar
spectrum is shown as a dotted line. Interestingly due to interference effects, the
120 nm thick film shows no better spectral match with the AM 1.5 standard solar
spectrum than the 80nm thick active layer. Limitations in the precision of the
calculated absorption can be a result of slight changes of the optical constants for
different film thicknesses. Experimentally, we found some deviations in the
absorption coefficients, mainly caused by slightly changing mixing ratios of the
polymer and the fullerene in the respective solutions. Here all calculations are based
on the optical constants determined for an about 110 nm thick blend film. Assuming
an internal quantum efficiency of unity (i.e. no recombination losses within the solar
cell), the expected short circuit current under AM 1.5 illumination for different layer
thicknesses is depicted in Fig. 6. Interestingly, the short circuit current does not
follow a straight line, but shows a local maximum at about 90nm active layer
thickness followed by a plateau until 130 nm. This is also visible in Fig. 5 by the
detailed curvature of the spectra from the 80 and 120 nm thick active layer devices. A
second increase is located between 140 and 200 nm, followed by another flat region
up to 250nm. Assuming a realistic open circuit voltage of about 0.8V and a fill
factor of 0.6 for an active layer thickness of 100nm, white light conversion
efficiencies of 3% can be calculated from these data under standard AM 1.5
illumination for an internal quantum efficiency of 1. These results are in good
agreement with measurements on plastic solar cells [2] where the active layer
thickness was estimated to be about 100nm. This suggests internal quantum
efficiencies of about 80% for the bulk-heterojunction ““plastic solar cells” based on
MDMO-PPV and PCBM. Above 200 nm active layer thickness—assuming again an
internal quantum efficiency of 80%—there is a potential for white light conversion
efficiencies of about 3.5%.

1
10 (PEDOT:PSS 150nm, MDMO-PPV:PCBM 1:4) -
L .....
9r guuEEE
NE 8-_ ..
[ ]
€ sl gunmmn®
— | [ ]
o°r
g 0
\’O 3 -
0 o[ [ ]
1 =
0!. PR IS ST SR S NS PR PR - PR - P |
0 50 100 150 200 250 300

active layer thickness [nm]

Fig. 6. Calculated short circuit current for different (MDMO-PPV:PCBM 1:4) active layer thicknesses
assuming an internal quantum efficiency of unity. The PEDOT layer thickness is set to 150 nm.
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5. Conclusions

Optical modeling is an important tool to understand the behavior of solar cell
devices consisting of multilayer structures. It was shown that the dependence of the
absorption profile within the active layer is not a trivial function of its thickness, but
follows—due to interference effects—a rather complicated behavior. In addition,
optical modeling provides a rather easy way to optimize the layer thickness of a
multilayer device for effective optical absorption. From these data, the photocurrent
obtainable from such devices can be calculated for any given incident light spectrum.
The results obtained here are in good agreement with experimental results and
suggest internal quantum efficiencies of about 80%. The knowledge of the charge
generation rates at all depths opens up the possibility for an improved electronic
modeling of these devices in the future.
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