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Abstract. Understanding the structure and dynamics of large biomolecular assemblies 
requires the development of new computational methods for (i) accurate structure 
prediction, (ii) molecular docking and (iii) long time-frame molecular simulation, and 
implementation on massively parallel computing infrastructure. This paper reviews our 
progress in these areas and applications on important molecular systems. 

 
1. Context and Outline 
A major next step in understanding and utilizing complex biological systems is a capability to 
rapidly model and simulate the structure, assembly and dynamics large assemblies of  
macromolecules.  Molecular machines are the basis for life’s chemistry. They malfunction in 
human disease, can be used to produce energy in microbes and from biomass, and provide the 
possibility of innovative new drug therapies at the interface of nanoscience and biology.     
 The ORNL Computational Biology Program is focusing on the key steps necessary to build 
and simulate large molecular machines: (1) Computing Accurate Building Blocks:  Building 
accurate models of molecular machines relies on a capability to build accurate component protein 
or nucleic acid structures. (2) Putting the pieces together: Given relatively accurate starting 
models, the components must be docked properly to create models for the molecular assembly. 
(3) Seeing how they work:  Once models are built, simulating complex molecular machines at 
biologically meaningful time scales requires thoughtful problem design and current and next 
generation capability computers. These three key areas are addressed in the following sections. 
 
2. Computing accurate starting protein models  
Structural Genomics Programs are investing huge sums with the assumption that good structures 
can be created by improved homology modeling systems [1]. Currently, while approximate 
structures can be obtained using existing infrastructure with techniques such as homology 
modeling, creating accurate computational models of protein and nucleic acids is generally 
beyond current capabilities. We are developing conformational search methods, constrained by 
multiple homology examples, which can greatly improve the accuracy of derived protein models.  
 Even with proper alignment, homology models usually have about 4A RMS error [2].  This 
error is too large to permit meaningful computational simulation / molecular dynamics. The goal 
is to reduce the errors in initial models. Our approach is to multi-align the group of evolutionary 
neighbors using sequence and structure information in order to find the most stable parts of the 
structure. The extracted stable core structure is typically 20-30% closer in terms of RMSD to a 
given prediction target than any single original template. Once this core structure has been 
established, more flexible parts of the target are modeled locally by choosing most sequence 
similar loops from the library of local segments found in all the homologues.  Thus the prediction 
target is modeled using specific parts of multiple known structures as well as structural elements 
they all share.  
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 The procedure typically reduces the RMS error in the predicted structure from about 3.4-4A 
to 2-2.5A.  Figure 1 shows a typical computed structure compared to the target, improved from 
3.4A using standard homology modeling methods, to 2.3A 

 
Figure 1. Computed model and crystallographic 1fq1 target protein at 2.3A RMSD 

 
 Our plan is to further improve these Intermediate accuracy models using a genetic algorithms 
conformation search strategy which uses backbone and sidechain angles as genetic parameters.  
This involves very large conformational searches in the neighborhood of the intermediate 
accuracy structure that will utilize shared memory space to house the population of molecular 
conformations. A key issue in this development is the production of code libraries for backbone 
and sidechain rotations (under control of the GA), which do not accumulate errors and have 
sufficient accuracy to avoid Cartesian errors at distances far away from the axis of rotation.  
Libraries for this have been developed and tested on the ORNL NCCS Cray XT3. 
 
3. Predicting interaction interfaces and binding partners solely from backbone structural 
information  
Understanding of the physical principles governing binding interfaces is key to a capability for 
predicting novel protein interactions and elucidating important cellular mechanisms. A significant 
body of work has been accumulated in the field on residue conservation [3], biased interface 
composition [4], and pair-wise residue preferences [5], but major contradictions remain regarding 
what are the real features of protein interfaces and how knowledge of those features can be used 
for in silico interface discovery. 
 In our study, we explored one important issue: how well prediction of the protein interfaces 
and docking partners can be done when only protein backbone information available. This 
question remains poorly explored while having major practical implications. First, homology 
models on the backbone resolution level are available for significant parts of the sequenced 
genomes, and robust methods based on backbone structure information could lead to extraction of 
the significant functional insights. Second, backbone-based methods will almost necessarily be 
fast enough to dock thousands of potential candidate structures, providing an opportunity for 
obtaining genome wide functional insights from such computational predictive studies. 
 Our approach includes three major components: (i) a new algorithm for the exhaustive 
sampling of all possible docked configurations for two subunits (Figure 2); (ii) Bayesian 
potentials for the scoring of the obtained configurations; and (iii) calibration curves predicting the 
likelihood that a given configuration is a native one from its score value [6]. In the new sampling 
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procedure, the protein surface is defined using a series of normal vectors that are spaced 1.5 A 
apart. Docking is realized by anti-aligning the surface normal vectors on each protein surface and 
rotating about their common axis [7].  This ensures efficient sampling of the relative 
conformational space since the protein surfaces are touching at a point with common normals. 
For a medium size complex, the number of the generated "trial" configurations for this 1.5A grid 
is in the range of 100 or so. The Bayesian framework for the potentials can accommodate fairly 
simple approaches, such as a simple count of specific contact pairs, or very sophisticated ones, 
involving relative orientations of Calpha-Cbeta bonds for the contacting residue pairs, higher order 
motifs of many contacting residues, etc.  

 
Figure 2.  Diagram showing surface normals for two proteins which are combinatorially anti-aligned to 
generate the set of candidates for the docked structure. A rotational search is carried out around the axis of 
each pair of anti-aligned vectors with each result scored as described in the text.   
 
 High performance computing implementations ideally fit our approach as more sophisticated 
parameter schemas require higher fidelity of the decoy complexes, and the increased fidelity can 
be guaranteed by a finer grid on the surface of the corresponding proteins. The resulting 
applications are naturally parallelizable up to 1000s processors. The protein surface can be 
divided up into small patches with every computing thread given its own group of decoys to 
score, while reporting to a centralized score stack where the calibration curves are maintained and 
analyzed.  
 So far we have implemented the simplest Bayesian potential (a count of contacting residue 
pairs) and extensively tested the whole pipeline in docking studies for a very large benchmark 
data set with over 1200 non-homologous and manually verified protein-protein complexes. Our 
method finds near native conformation in 72% of the complexes in the top scoring 1% of decoys 
(it is 247 decoys per complex on average). As the fraction of such conformations in the top 1% is 
more than 20%, it is usually enough to draw 5-10 decoys at random from the top percentile in 
order to get at least one native conformation for these 72% of the complexes. We also have 
formulated rules that will allow us to determine if a given protein complex falls into the category 
(those 72%), for which the prediction algorithm works. 
 Finally, we have assembled a large collection of the independently crystallized subunits 
corresponding to the protein chains in the tested complexes (with less that 3A RMSD and over 
80% sequence identity). The method performance on the independently crystallized subunits was 
essentially identical to one we have described above. This result validates our strategy and proves 
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that for a certain categories of the protein complexes it is possible to devise algorithms predicting 
interaction surfaces solely from backbone structural information.  
 
4. Toward dynamic mechanisms of molecular machines  
Once models are built, simulating complex molecular machines at biologically meaningful time 
scales requires thoughtful problem design and significant capability computing.  For example, 
rational engineering to improve cellulases, which are key to biomass energy initiatives, will 
require a very detailed understanding of molecular mechanisms of catalysis and processivity.  
Classical molecular dynamics simulations of cellulases are being carried out using models with 
sizes in the range of 700,000 – 1,000,000 atoms and for periods between 20 and 100 nanseconds. 
The initial model used was a cellulase CBH I enzyme [8], linker and binding domain, equilibrated 
in water, built by John Brady (Cornell University) and provided by Mike Himmel (National 
Renewable Energy Laboratory - NREL).  A 20ns simulation was carried out on a system of 
711887 atoms including water molecules. Data was collected at a rate of 1ns every 9hrs when 
calculations were performed on 1024 processors of the CRAY XT3 using the LAMMPS [9] code. 
The CHARMM force-field [5] was used to perform the calculations and constant volume and 
temperature simulations were found to be sufficient since the density of the initial system was 
close to the equilibrium density.  Simulations were carried out with CBH I on a fibril of cellulose 
containing 108 strands with each strand containing 40 glucose units. Initial studies focused on 
large scale motions of the enzyme and its active site cleft.  Figure 3 shows this system.   
   

 
Figure 3. Cellulase CBH 1 enzyme complex with cellulose fibril showing binding domain (left), linker 
(center) and catalytic domain (right).  A single cellulose polymer chain is extracted from the fibril surface 
and threaded into the catalytic domain for processing into single sugars. The details of this mechanism are 
not understood and computational simulation is being used to explore this. 
 
As part of a consortium working on cellulase mechanics, continuing work is focused on how the 
nicked polymer strand is recognized by portions of the enzyme, how the cellulose polymer strand 
becomes oriented and fed into the catalytic domain (right domain) and how the central linker acts 
to guide the strand.  Other large problems involving molecular complexes including Alzheimer’s 
disease related amyloid fiber assembly [6] and simulation of drug binding to membrane bound 
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receptors are being carried out on the ORNL Cray XT3 using molecular mechanics and quantum 
mechanics / molecular mechanics approaches.  
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