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Axially symmetric focusing as a cuspoid diffraction catastrophe: Scalar and vector cases
and comparison with the theory of Mie
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An analytical description of arbitrary strongly aberrated axially symmetric focusing is developed. This is
done by matching the solution of geometrical optics with a wave pattern which is universal for the underlying
ray structure. The corresponding canonical integral is the Bessoid integral, which is a three-dimensional
generalization of the Pearcey integral that approximates the field near an arbitrary two-dimensional cusp. We
first develop the description for scalar fields and then generalize it to the vector case. As a practical example the
formalism is applied to the focusing of light by transparent dielectric spheres with a few wavelengths in
diameter. The results demonstrate good agreement with the Mie theory down to Mie parameters of about 30.
Compact analytical expressions are derived for the intensity on the axis and the position of the diffraction focus
both for the general case and for the focusing by microspheres. The high intensity region is narrower than for
an ideal lens of the same aperture at the expense of longitudinal localization and has a polarization dependent
fine structure, which can be explained quantitatively. The results are relevant for aerosol and colloid science
where natural light focusing occurs and can be used in laser micro- and nano-processing of materials.
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I. INTRODUCTION

Axially symmetric focusing of wave fields occurs in vari-
ous areas of science, since physical systems often possess an
intrinsic rotational symmetry. In particular, the electromag-
netic field enhancement by small spherical particles is impor-
tant in many situations. Spheres have minimal surface energy
for a given volume and thus are naturally formed as a result
of phase separation, for example, as aerosols or colloids.
Applications of colloidal microspheres in photonic crystals
and photonic crystal slabs led to an explosion of the experi-
mental and theoretical studies of their optical properties.1,2

The majority of these investigations concentrate on their col-
lective properties in a periodic arrangement. Single micro-
spheres are used as high quality optical resonators and as
agents that allow controlled and highly localized wave-
length-dependent field enhancement for nonlinear optical
studies and in resonance spectroscopy.3,4 Here, the emphasis
is placed on the eigenmode analysis and the distribution of
the field within the sphere or in the immediate vicinity of its
surface.

Lately, it was demonstrated that self-assembling arrays of
transparent colloidal microspheres can be employed for high-
throughput laser-assisted micro- and nano-structuring of
materials.5–7 Similar effects were observed in experiments on
dry laser cleaning, where such particles are used as con-
trolled contaminants.8–10 This necessitates better understand-
ing of the focusing of light by microspheres with diameters
of several wavelengths. Only a few rigorous results are avail-
able for the intermediate range of sphere sizes and distances
from the particle. The majority of analytical approaches ei-
ther deal with the properties of the eigenmodes, or refer to
the integral characteristics and/or to the far field behavior.11
Mie resonances were analyzed on the basis of advanced geo-
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metrical optics12 and detailed numerical calculations for
transparent spheres of several wavelengths in size were per-
formed in connection with the use of laser tweezers in
biology13 and for needs of aerosol science.14

In this work we develop a theoretical description for an
arbitrary nonparaxial strongly aberrated axially symmetric
focusing and apply it to the case of dielectric microspheres.
Our emphasis is on the fine structure of the field distribution
in the exterior of the sphere up to the focal region, which can
be used to control and improve the concentration of energy.

Strong spherical aberration makes the focusing nontrivial.
Usually, the exact solution is obtained using the Mie
theory,15 which does not give much of a physical insight as it
requires the summation of a large number of terms in a mul-
tipole expansion even for moderate sphere sizes. At the same
time, the main focusing properties of transparent dielectric
microspheres originate rather from the picture of geometrical
optics.

One might think that in the lowest approximation a small
sphere acts as an ideal lens. However, in the range of sizes
we are interested in, this picture does not even provide a
description which is qualitatively correct. Also classical for-
mulas for weak spherical aberration16 do not yield useful
results for the field behind a sphere: They predict that the
maximum intensity is kept unchanged and its position does
not depend on the wavelength.

Our approach, following the method of uniform caustic
asymptotics,17 is based on the canonical integral for the
cuspoid ray topology of strong spherical aberration. Though
this Bessoid integral—a member of the hierarchy of diffrac-
tion catastrophes18,19—appears naturally in the paraxial ap-
proximation, it can be used to describe arbitrary axially sym-
metric strong spherical aberration by appropriate coordinate

and amplitude transformations. For angularly dependent vec-
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torial amplitudes the formalism uses higher-order Bessoid
integrals.

The Bessoid integral is the axially symmetric generaliza-
tion of the Pearcey integral,20 which plays an important role
in many short wavelength phenomena.21 Therefore, the pres-
ent approach can be applied in various areas of physics
where axially symmetric focusing is of importance, e.g.,
acoustics, semiclassical quantum mechanics, radio wave
propagation and scattering theory.

II. THE BESSOID INTEGRAL

A. Definition

We first consider the diffraction of a scalar spherically
aberrated wave on a circular aperture with radius a in the
plane z=−f around the z axis, where f is the focal distance.
The origin of the coordinate system is put into the focus F. In
cylindrical coordinates �� ,z�, the paraxial Fresnel-Kirchhoff
diffraction integral16 yields the field amplitude

U��,z� = −
ikU0

f
eikz�

0

a

J0�k
��̃1

f
�e−ikz�̃1

2/2f2−ikB�̃1
4
�̃1d�̃1.

�1�

Here U0 is the amplitude of the incident wave in the center of
the aperture, k is the wave number �k=2� /�, where � is the
wavelength� and �̃1 is the distance from the axis on the ap-
erture. The Bessel function J0 comes from the integration
over the polar angle �. The parameter B in the exponent
determines the strength of the spherical aberration. For
B�0 the diffraction focus shifts towards the aperture, while
B=0 corresponds to ideal focusing.16

We introduce the dimensionless coordinates �1��44kB�̃1,
R��4k3 /4B� / f and Z��k /4Bz / f2 and consider an infinitely
large aperture. Then the field �1� becomes proportional to the
Bessoid integral22

I�R,Z� = �
0

�

�1J0�R�1�e−i�Z�1
2/2+�1

4/4�d�1 �2�

=
1

2�
�

−�

� �
−�

�

ei�dx1dy1, �3�

where

� � − Rx1 − Z
x1

2 + y1
2

2
−

�x1
2 + y1

2�2

4
. �4�

Its absolute square is shown in Fig. 1. In the Cartesian rep-
resentation x1=�1 cos � and y1=�1 sin � are dimensionless
coordinates in the plane of integration. Expression �3� is the
axially symmetric generalization of the Pearcey integral20

IP�X,Z� =
1

�2�
�

−�

�

e−i�Xx1+Zx1
2/2+x1

4/4�dx1, �5�

which is also shown in Fig. 1.
Both integrals correspond to so-called diffraction catas-

17–19
trophes. Their field distribution contains caustic zones
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where the intensity predicted by geometrical optics goes to
infinity. The Pearcey integral corresponds to a cusp caustic,
i.e., a single one-dimensional curve in a two-dimensional
space, and does not reveal a high intensity along the axis,
while the Bessoid integral corresponds to a cuspoid caustic,
i.e., to a surface of revolution of the cusp in three dimen-
sions, as well as the caustic line up to the focus F at z=Z
=0. The equation of the cusp is given by the semicubic pa-
rabola

27R2 + 4Z3 = 0. �6�

Henceforth we will apply the term cusp also for the whole
cuspoid. A caustic is denoted as stable, if it does not change
its topology under small perturbations. This is the case for
the Pearcey integral. The Bessoid integral corresponds to a
structurally unstable caustic, because an infinitely small per-
turbation will destroy the radial symmetry and the axis will
not be a caustic zone any longer. It is, however, stable on the
class of axially symmetric wave fronts.

The cusp is the envelope of the family of rays. The latter
correspond to the points of stationary phase in the Bessoid
integral, i.e., those points where the two first partial deriva-
tives with respect to R and Z of the phase � in Eq. �3�
vanish. Inside the cusp, for 27R2+4Z3	0, three rays
�tangents to the cusp� arrive at each point of observation
P��� ,z�, and outside, for 27R2+4Z3�0, there is only one
real ray �Fig. 2�. Thus, the cusp forms the border between the
lit region and the �partial� geometrical shadow, where two
rays merge.

Without loss of generality, we assume that all rays lie in
the meridional plane �=0 �y1=0� and hence correspond to
the roots x �j=1,2 ,3� of the cubic equation

FIG. 1. Absolute square of the Pearcey integral IP �top� and the
Bessoid integral I �bottom�. The latter is proportional to the field of
a spherically aberrated wave within small angles approximation.
1,j
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R + Zx1 + x1
3 = 0, �7�

which are given by Cardan’s formulas.23 On the axis, R=0, a
cone formed by an infinite number of rays converges. These
rays originate from the circle x1

2+y1
2=−Z on the aperture.

They are all in phase and produce a high intensity along the
axis �compare the two pictures in Fig. 1�. The oscillations
occur due to interference with the ray propagating along the
z axis. One can also directly observe that the Bessoid integral
has the topology of spherical aberration as the maximum of
intensity does not lie in the geometrical focus Z=0 but is
spherically aberrated to a negative value of Z, i.e., towards
the aperture.

B. Asymptotic expressions

Off the caustic—away from the cusp and the focal line—
the Bessoid integral �3� can be approximated by the method
of stationary phase. As the integrand in Eq. �3� is highly
oscillatory, the only significant contributions to the integral
come from those regions where the phase is stationary24

I�R,Z� � 	
j=1

m
ei�j+i�/4 signHj

�
det H j

, �8�

where the summation runs over all real rays, i.e., m=1 �lit
region� or m=3 �shadow�. The phase � j is obtained by in-
serting the jth stationary point �x1,j ,y1,j =0� into Eq. �4�. The
determinant and signature of the Hessian are given by

det H j = Z2 + 4x1,j
2 Z + 3x1,j

4 , �9�

signH j = sgn�− Z − 3x1,j
2 � + sgn�− Z − x1,j

2 � . �10�

Near the cusp the Bessoid integral shows an Airy-type
behavior typical for caustics where two real rays disappear
and become complex.

One can also derive a different approximation valid on
and near the caustic axis, i.e., for Z
0 and small R �Appen-
dix A�:

I�R,Z� �
��

2
J0�R�− Z�ei�Z2−��/4 erfc�Z

2
ei�/4� . �11�

Here erfc is the complementary error function,25 which can
also be written in terms of Fresnel sine and cosine
functions.22 Expression �11� becomes exact at the axis R=0,

FIG. 2. �a� Three-ray region inside the cuspoid �dashed line�. �b�
One-ray region outside. The z axis is represented by a dashed-dot-
ted line.
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where J0�0�=1. It shows that near the axis the Bessoid inte-
gral is virtually a Bessel beam26 with a variable cross sec-
tion.

C. Numerical evaluation

As the Bessoid integrand is highly oscillatory, its evalua-
tion for the whole range of coordinates R and Z is nontrivial
and of large practical importance. Direct numerical integra-
tion along the real axis and the method of steepest descent in
the complex plane both have their disadvantages. By far the
fastest technique is based on the numerical solution of the
ordinary differential equation �derivation in Appendix B�27,28

LR − ZIR + iRI = 0. �12�

Indices denote �partial� derivatives and L� IRR+ IR /R is an
abbreviation for the radial Laplacian applied onto I. The
three initial conditions at R=0 are

I�0,Z� =
��

2
ei�Z2−��/4 erfc�Z

2
ei�/4� , �13�

IR�0,Z� = 0, �14�

L�0,Z� = ZI�0,Z� + i. �15�

I�0,Z� was taken from Eq. �11�, IR�0,Z� vanishes due to
symmetry, and the last condition arises from the fact that the
Bessoid integral satisfies the paraxial Helmholtz equation
2iIZ+L=0, where IZ is calculated from Eq. �13�.

In the literature the Pearcey integral was calculated by
solving differential equations,29 by a series representation30

and by the first terms of its asymptotic expansion.31 The
Bessoid integral was expressed in terms of parabolic cylinder
functions32 and as a series.22 The latter work gives reference
to an unpublished work of Pearcey,33 stating that differential
equations for the Bessoid integral were employed there.

D. Geometrical optics for the cuspoid

In geometrical optics, the rays carry the information of
amplitude and phase. The total field in a point P is given by
the sum of all ray fields there. A ray’s field at P is determined
by34

U�P� = U0
eik�

�J
, �16�

where U0 is the amplitude at some initial wave front, � is the
eikonal, and J is the generalized geometrical divergence,
which can be calculated from flux conservation along the ray.
For a homogeneous medium with constant refractive index34

J =
RmRs

Rm0Rs0
. �17�

Rm, Rs are the main radii of curvature at the point P and Rm0,
Rs0 are the radii on the initial wave front, where U=U0.

When a ray touches a caustic, its radius of curvature �the

geometrical divergence in the general case� changes the sign
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and the ray undergoes a caustic phase delay17,34 of −� /2,
which is taken into account by the proper choice of the
square root in Eq. �16�. When a ray touches several caustics,
these delays must be added. The total caustic phase shift,
denoted as ��, can be explicitly written in the phase. For the
cuspoid topology and ray numbering �j=1,2 ,3� according to
Fig. 2, we obtain

U�P� = U0
eik�

�J
= U0

eik�+i��

�
J

�18�

with

�� j = �− � for j = 1,

0 for j = 2,

− �/2 for j = 3.
� �19�

Ray 1 touched the cuspoid and the focal line, ray 2 is not
shifted, and ray 3 touched the cuspoid.

III. RELATION BETWEEN GEOMETRICAL AND
WAVE OPTICS

A. Matching with the Bessoid integral

If we have found the phases ��k� and divergences J of
the rays, the �scalar� geometrical optics solution with an axi-
ally symmetric 3-ray cuspoid topology can be written as

U�r� = 	
j=1

3
U0,je

i�j�r�

�Jj�r�
. �20�

Here r��� ,z� are the real-space coordinates and we have
allowed for different initial amplitudes U0,j of the rays. This
field shows singularities at the caustic, especially on the axis,
which is the most interesting region for applications.

We want to describe arbitrary axially symmetric focusing
by matching the solution of geometrical optics �where it is
correct� with a wave field constructed from the Bessoid in-
tegral �3�, which naturally appears in the paraxial approxi-
mation and is finite everywhere, and its partial derivatives IR
and IZ �method of uniform caustic asymptotics�. We make the
ansatz17

U = �AI +
1

i
ARIR +

1

i
AZIZ�ei. �21�

The yet unknown arguments of the Bessoid integral and its
derivatives are R� (R�r� ,Z�r�). A�r�, AR�r� and AZ�r� are
three amplitude factors and �r� is a phase function. �The
indices R and Z in the amplitudes do not indicate deriva-
tives.� Now the geometrical optics solution �20� is matched
with the stationary phase approximation of Eq. �21� by
equating the amplitudes and phases:17,35

U0,j

�Jj

=
A�r� + AR�r��R�R,t j� + AZ�r��Z�R,t j�

�Hj

, �22�

� j�r� = �r� + ��R,t j� . �23�

The terms �R and �Z are the partial derivatives of Eq. �4�

and
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1
�Hj

�
ei�/4 signHj

�
det H j

, �24�

where the determinant and signature of the Hessian are writ-
ten in Eqs. �9� and �10�, respectively. Outside the cusp, the
rays 2 and 3 are complex and the general definition of Hj is
more subtle, namely

1
�Hj

�� i

�20,j
� i

�02,j
, �25�

with �20��2� /�x1
2, �02��2� /�y1

2 �the index j denotes sub-
stitution of the jth point of stationary phase as argument�.

The three points of stationary phase were denoted as
t j ��tj ,0�, where the tj are given by the �correctly ordered�
Cardan’s solutions of Eq. �7�, i.e., of

R + Zt + t3 = 0. �26�

Note that they are functions of the Bessoid coordinates,
t j = t j�R�, and the latter depend on the real space coordinates:
R=R�r�. The partial derivatives with respect to R and Z in
Eq. �22� must be evaluated in such a way as the tj were held
constant, although they are functions of R themselves. The
conditions �22� and �23� give six equations for the six un-
knowns R, Z, , A, AR, and AZ.

It is convenient to solve Eq. �23�, that is

� j =  − Rtj −
1

2
Ztj

2 −
1

4
tj
4, �27�

using quantities that are permutationally invariant with re-
spect to the roots tj.

21,35 This yields

R =�Z3

54
−

4b2

9Z
,

Z = ±�4 2

3
�− 2 sgn�b3��b2 + q + 2�D ,

D � 2b2 − q + 2�b2
2 − b2q + q2,

 = b1 −
1

6
Z2, �28�

where sgn�Z�=sgn�Z4−24b2�. The bl �l=1,2 ,3� are given by
b1��1/3�	 j=1

3 � j, b2�	 j=1
3 �� j −b1�2 and b3�	 j=1

3 �� j −b1�3.
The quantity q �sometimes called discriminant� can be ex-
pressed in different ways:

q3 � 6b3
2 − b2

3 =
1

211R2�27R2 + 4Z3�3

= − 2��1 − �2�2��2 − �3�2��3 − �1�2. �29�

Hence, it vanishes exactly at the caustic where two phases
are equal. At the cuspoid �2=�3 �27R2+4Z3=0� and on the
axis �1=�3 �R=0�.

The solutions of Eq. �22�, that is
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U0,j

�Jj

=
A − tjAR − 1

2 tj
2AZ

�Hj

, �30�

are35

A = − U0,1

�H1

�J1

t2t3

�t3 − t1��t1 − t2�
− ¯ − ¯ ,

AR = U0,1

�H1

�J1

t1

�t3 − t1��t1 − t2�
+ ¯ + ¯ ,

AZ = 2U0,1

�H1

�J1

1

�t3 − t1��t1 − t2�
+ ¯ + ¯ , �31�

where the cyclic terms permutate the numbering of rays:
�1,2 ,3�→ �2,3 ,1�→ �3,1 ,2�. The Bessoid matching solu-
tion �21� does not show the divergences of geometrical op-
tics.

Note that this method utilizes also the so-called complex
rays which have less apparent physical meaning. It turns out
that both real and complex rays provide the geometrical skel-
eton for the wave flesh.17

B. Expressions on and near the axis in the general case

All formulas can be strongly simplified on and near the
axis inside the cuspoid �small �, z	0�. The Bessoid coordi-
nates have the simple form �Appendix C�

R �
��1 − �3�/2

�2�4 ��1 + �3�/2 − �2

�
k� sin �

�− Z
, �32�

Z � − 2��1 + �3

2
− �2 � − 2��np − �p, �33�

where ��0 is the local angle of the nonparaxial cone of rays
with the axis and �np and �p denote the phases of the non-
paraxial rays and the �par�axial ray, respectively �see Fig. 9
in Appendix C�. The simple natural combination

R�− Z �
�1 − �3

2
� k� sin � �34�

also appears in the near axis approximation for the Bessoid
integral �11�. On the axis ��=0, �1=�3� we obtain R=0 and
Z=−2��1−�2.

The results �32�–�34� have transparent physical meaning.
Indeed, near the axis the largest contribution to the field
comes from the converging cone of nonparaxial rays �similar
to ray 1� that intersect the axis at an angle �. If the angle �
is constant and all rays have the same intensity, the result is
the Bessel beam.26 Such beams have a propagation constant
along the z direction equal to the z component of the wave
vector of the plane waves which form them and correspond-
ingly the argument of the Bessel function �cylindrical analog
of a plane wave� is equal to k� sin �. As the angle � gradu-
ally changes for the spherically aberrated wave, so does the
argument of the Bessel function.
235401
Additionally, there exists the axial ray 2, which is not
present in the canonical Bessel beam �though it often appears
in real experimental situations�. The interference of this
beam with the converging ray cone results in the intensity
oscillations along the axis �Fig. 1, bottom�. Clearly, these
oscillations are largely due to the phase difference �np−�p.
At large negative Z in Eq. �11�

erfcZ

2
exp�i

�

4
�� → 21 −

1
��Z

exp�i
3� − Z2

4
�� ,

and the oscillating behavior is governed by the phase of the
exponent, which is equal to 3� /4− ��np−�p�. This clarifies
the origin of expression �33�, as it is Z2 entering the final
formulas.

In particular, the global maximum is expected on axis at
the first constructive interference of the axial and the non-
paraxial rays. Because Z	0 in this region, the two terms of
the erfc expansion are first in phase when the phase differ-
ence is �1−�2=3� /4. The geometrical meaning of this re-
sult is that rays 1 and 3 are shifted by −� /2 as they touch the
cusp. In addition, they acquire a further shift of −� /2 when
crossing the focal line. But exactly on the axis only half of
this delay has occurred yet, which yields the 3� /4 differ-
ence. The numerical maximum of the Bessoid intensity �ab-
solute square� occurs at Zm�−3.051 and hence this yields
the condition

�1 − �2 =
Zm

2

4
� 2.327, �35�

which is close to 3� /4�2.356.
The width of the focal line caustic, �w, is defined by the

first zero w0�2.405 of the Bessel function in Eq. �11�.
Hence, with Eq. �34�

�w �
w0

k sin �
� 0.383

�

sin �
. �36�

In the geometrical optics picture the first minimum occurs
when rays 1 and 3 interfere destructively, i.e., when their
phase difference becomes �. This results in �1−�3=�
+� /2, where the term � /2 takes into account the caustic
phase shift of ray 1: �w���1−�3� /2k sin �=0.375� / sin �.
Note, that this is smaller than the Airy spot for the same
aperture angle16 and large angles � are indeed realized, e.g.,
in the case of the sphere studied below.

Finally, we present an expression for the field �21� on the
axis. The equations for the amplitudes �31� simplify tremen-
dously �Appendix D� and result in

U = U0,1
�2k� sin �

�J1
�iI −

1

Z
� +

U0,2

�J2
�ei�2. �37�

The structure of expression �37� helps to understand its
physical meaning. It details the contribution of the cone of
nonparaxial rays, represented by ray 1 �first term�, and the
axial ray 2 �second term� to the overall structure of the field.
Note that in the general case not only the angle �, but also
the amplitude of the converging cone may vary along z �Z�,

thus slowly modifying the properties of the Bessel beam in
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the axial region. This enters Eq. �37� via amplitude transfor-
mations and is manifested by the presence of the initial ray
amplitudes in both terms. Inside the cusp on the axis
�z ,Z	0 and � ,R→0� both 1/�J2 and the ratio �� /�J1 re-
main finite as the divergence of the paraxial ray 2 is nonsin-
gular, while the sagittal divergence J1 of the cone of non-
paraxial rays 1 is proportional to �. Due to the Bessoid
matching procedure the singularity of the converging cone is
removed by the compensating factor ��. Along the axis the
last term in Eq. �37� partly cancels with the second term in
the parentheses of the first term. As a result, the on axis field
behavior up to the focus is dominated by a single term pro-
portional to the Bessoid integral I, which justifies the maxi-
mum condition �35� discussed above.

C. Angular dependencies and vectorial problems:
Higher-order Bessoid matching

Often—especially in vectorial problems—there exists
axial symmetry with respect to the wave fronts, ray phases
and generalized divergences, but not with respect to the am-
plitudes. In this case, new functions are required to represent
arbitrary angular dependence of the field. The natural gener-
alizations of Eq. �3� are the higher-order Bessoid integrals32

with the non-negative integer m:

Im�R,Z� = �
0

�

�1
m+1Jm�R�1�e−i�Z�1

2/2+�1
4/4�d�1, �38�

where I0� I and Jm are higher-order Bessel functions. The
higher-order Bessoid integrals obey the recurrence relation

Im+1 = − Im,R + m
Im

R
. �39�

The integral Im is canonical for angular dependent geometri-
cal field components U�m��� ,z�sin m� or U�m��� ,z�cos m�. In
matching similar to Eq. �21�,

U�m� = �AmIm +
1

i
AmRIm,Rm

+
1

i
AmZIm,Zm

�eim, �40�

the angular dependence cancels. Here Am, AmR, and AmZ are
the higher-order amplitude factors, whereas Im,Rm

and Im,Zm
are partial derivatives of the higher-order Bessoid integrals
Im. Since the latter can be written in terms of I0, it can be
shown that the points of stationary phase, the matching of
phases and thus the higher-order coordinates �Rm, Zm� and
phases �m� are identical with the original ones:

Rm = R, Zm = Z, m =  . �41�

From the physical point of view, this reflects the conserva-
tion of the wavefront and thus the ray phases and diver-
gences.

The equations for the amplitudes have to be generalized.
The higher-order amplitudes Am, AmR, and AmZ have the same
form as Eq. �31�, but with an additional factor �itj�m in each
denominator, i.e.,

Am = − U0,1

�H1 t2t3
m − ¯ − ¯ ,
�J1 �it1� �t3 − t1��t1 − t2�

235401
AmR = U0,1

�H1

�J1

t1

�it1�m�t3 − t1��t1 − t2�
+ ¯ + ¯ ,

AmZ = 2U0,1

�H1

�J1

1

�it1�m�t3 − t1��t1 − t2�
+ ¯ + ¯ .

�42�

A more detailed description of the higher-order Bessoid in-
tegrals as well as the derivation of the recurrence relation and
the amplitude equations can be found in Appendix E.

IV. THE SPHERE

A. Geometrical optics solution

Consider a plane wave falling on a transparent sphere in
vacuum. Figure 3 illustrates the refraction of a single ray in
the meridional plane, containing the point of observation P
and the axis. Within the frame of geometrical optics the
cuspoid is formed behind the sphere in analogy to Fig. 2.

Let a be the sphere radius and n�1 its refractive index.
In contrast to the previous sections, we choose the origin of
the axially symmetric cylindrical coordinate system �� ,z�
differently now, namely as the center M of the sphere. The
incident plane wave propagates parallel to the z axis. The
geometrical optics focus, formed by the paraxial rays, is lo-
cated at F��0, f� with36

f �
a

2

n

n − 1
. �43�

A ray passes the point Q, is first refracted at Q1, a second
time at Q2 and propagates to P. The incident and transmitted
angle, �i and �t, are related by Snell’s law, sin �i=n sin �t.
Writing the position of P��� ,z� in polar coordinates,
�= l sin � and z= l cos �, one can find the following expres-
sion, determining the three rays that arrive at P:

l sin�� + 2�i − 2�t� = a sin �i, �44�

where one has to substitute �t=arcsin��sin �i� /n�. This is a
transcendental cubic-like equation which has three roots, ei-
ther all real or one real and two complex conjugate. �For n
��2 this is true for z�a; if n	�2, the three-ray region does
not start until some distance behind the sphere.� We denote
them as �i,j �j=1,2 ,3� and choose their order consistently
with the previous notations. Therefore, � is always real and

FIG. 3. Refraction of a ray—propagating from Q to P—by a
sphere with radius a and refractive index n. The picture is drawn in
the meridional plane and all indicated angles are positive.
i,1
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negative, whereas �i,2 and �i,3 are either real and positive �lit
region� with �i,2	�i,3 or complex conjugate �geometrical
shadow�.

When the �i,j are known, we find the �t,j from Snell’s law
and the � j and � j from

� = 2�t − �i, � = 2�i − 2�t. �45�

Omitting the index j, the three ray coordinates can be written
as

s � Q2P =
l cos � − a cos �

cos �
. �46�

The eikonal is the optical path accumulated from Q to P �on
the dashed vertical line in Fig. 3 all rays are still in phase�:

� = QQ1 + nQ1Q2 + Q2P − a = a�2n cos �t − cos �i� + s . �47�

The sphere radius a was subtracted from the path contribu-
tions to make the eikonal zero in the center M, if there were
no sphere.

Next we calculate the geometrical optics amplitudes by
determining the meridional and sagittal radii of curvature, Rm
and Rs, and their changes due to refraction. Formulas for the
refraction on an arbitrary surface with arbitrary orientation of
the main radii exist in the literature.34,37 A simple derivation
for the sphere can be found in Appendix F. It yields the
dependence of the actual radii of curvature Rm and Rs �right
after the refraction� on the initial radii Rm0 and Rs0 �just
before the refraction�:

Rm =
naRm0 cos2 �t

a cos2 �i + Rm0�cos �i − n cos �t�
, �48�

Rs =
naRs0

a + Rs0�cos �i − n cos �t�
. �49�

For a plane wave, Rm0 ,Rs0→�, the radii of curvature in the
points Q1 �inside the sphere� and Q2 �outside the sphere�
have the compact form

Rm,Q1
= − a

sin �i cos2 �t

sin�� − � �
, �50�

FIG. 4. �a� A ray propagates from Q to P in the meridional plane
�plane of incidence�. �b� Decomposition of the initial electric field
vector with length E0 into its �- and �-component parallel and
perpendicular to the meridional plane.
i t

235401
Rm,Q2
= − a

cos �i

2
� cos �i sin �t

sin��i − �t�
− 1� , �51�

Rs,Q1
= − a

sin �i

sin��i − �t�
, �52�

Rs,Q2
= − a

sin�2�t − �i�
sin�2�i − 2�t�

. �53�

The overall geometrical generalized divergence after both
refractions reads �index j omitted�

1
�J

=
�Rm,Q1

Rs,Q1

��Rm,Q1
+ d��Rs,Q1

+ d�

�Rm,Q2
Rs,Q2

��Rm,Q2
+ s��Rs,Q2

+ s�
,

�54�

where d�2a cos �t is the distance of propagation within the
sphere. Note that ray 1 has a negative angle �i. Besides, a
double caustic phase shift should be added �manually� to the
phase of this ray �minus sign� as in Eq. �18�. The caustic
shifts of the rays 2 and 3 are taken into account automatically
if the branch cut for the square roots in Eq. �54� is along
the negative real axis from −� to 0 and the branch with
�−1= +i is used. In this procedure it is not allowed to mul-
tiply the radicands and write them under one common square
root. Also the case of complex rays 2 and 3 is covered cor-
rectly by this convention.

Finally, the geometrical optics solution for the sphere is
given by Eq. �20�, where the eikonal � and divergence J are
given by Eqs. �47� and �54�. The equation determining the
three rays is Eq. �44�. In the geometrical shadow the sum
�20� becomes only the term with j=1.

To incorporate Fresnel transmission coefficients, we as-
sume that the incident light is linearly polarized in x direc-
tion, i.e., the incident electric field vector is

E0 = E0ex, �55�

with ex the unit vector in x direction and E0�U0. Since axial
symmetry is broken, we introduce the polar angle �
which is measured from x to y. The point of observation
P��� ,� ,z� will be reached by three rays �two may be com-
plex� and their angles �i,j are still determined by Eq. �44�, for
all three rays lie in the meridional plane, containing P and
the z axis �Fig. 4�a��. The initial �- and �-polarized compo-
nents depend on � �Fig. 4�b��:

E0,� = E0 cos � , �56�

E0,� = E0 sin � . �57�

We define the overall transmission coefficients

T� � t12,�t21,� = 1 − r12,�
2 , �58�

T� � t12,�t21,� = 1 − r12,�
2 . �59�

Here the t12 �r12� are the standard Fresnel transmission �re-
flection� coefficients16 from the medium 1, i.e., vacuum, into

the medium 2, i.e., the sphere.
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The ray field behind the sphere is found by the projection
onto the original Cartesian system �x ,y ,z�. We write the
components of the transmission vector T��Tx ,Ty ,Tz� and
show the ray index j=1,2 ,3 explicitly. The � dependence is
indicated with the superscript �m�:

Tx,j = Tj
�0� + Tj

�2� cos 2�, Tj
�0� �

T�,j cos � j + T�,j

2
,

Ty,j = Tj
�2� sin 2�, Tj

�1� � T�,j sin � j ,

Tz,j = Tj
�1� cos �, Tj

�2� �
T�,j cos � j − T�,j

2
. �60�

Hence, the geometrical optics solution for the electric field
E��Ex ,Ey ,Ez�—including the eikonal � �47� and diver-
gence J �54�—reads

Ex,j = Ej
�0� + Ej

�2� cos 2� ,

Ey,j = Ej
�2� sin 2� ,

Ez,j = E�1� cos � ,

Ej
�m� � E0

Tj
�m�eik�j

�Jj

. �61�

FIG. 5. Normalized intensity 
E /E0
2 in the normalized x,z plane
�top� and in the y,z plane �bottom�. Contour shadings go from white
�zero� to black ��700�. Parameters: refractive index n=1.5, dimen-
sionless wave number ka=100. The initial electric field vector is
E0=E0ex. The sphere with radius a is positioned at the origin of the
coordinate system. The focus of geometrical optics is located at z
= f =1.5a, whereas the diffraction focus �the point of maximum in-
tensity� is significantly shifted towards the sphere: fd�1.25a. In
dimensional units, for a wavelength of �=0.248 �m the sphere
radius is a�4 �m.
j

235401
B. Bessoid matching solution

Matching each term E�m�=	 j=1
3 Ej

�m� by the ansatz �21� in
its higher-order formulation �40� with the corresponding
integral Im, we obtain the vectorial electric field E
��Ex ,Ey ,Ez� in the form

E = E�0��1

0

0
� + E�1�� 0

0

cos �
� + E�2��cos 2�

sin 2�

0
� . �62�

Figure 5 illustrates the intensity, i.e., the absolute square
of the electric field 
E
2�EE*, for �=0 �x ,z plane� and
�=� /2 �y ,z plane�.

The magnetic field H can be calculated similarly �incident
magnetic field H0=H0ey, H0=E0� and the �normalized�
Poynting vector is given by S�Re�E�H*�.

C. On the axis

On the axis the electric field is given by its x component
only �direction of polarization� due to averaging over � in
Eq. �62�. For z	 f �inside the cusp� it is given by the ana-
lytical expression �37�. After several simplifications27 it can
be written as

E = E0T1D1�iI −
1

Z
� +

T2

1 − z/f
�ei�2, �63�

where the transmission factors Tj �Tj
�0� are given in Eq. �60�

and for dielectric spheres have the form

T1 =
n�1 + 3 cos �1�cos �i,1 cos �t,1

�n cos �i,1 + cos �t,1�2 , �64�

T2 =
4n

1 + n2 . �65�

The phases in the coordinate Z=−2��1−�2 are

�1 = �3 = ka�2n cos �t,1 − cos �i,1 +
sin �1

sin �1
� , �66�

�2 = 2ka�n − 1� + kz �67�

and D1���1−�3 /�J1 is the first ray’s compensated sagittal
divergence:

D1 = −
��Rm,Q1

�1�Rs,Q1
�1

���Rm,Q1
�1 + d1���Rs,Q1

�1 + d1�

�
��Rm,Q2

�1�Rs,Q2
�1

��Rm,Q2
�1 + s1

�2k sin �

= − 2�2ka cos��1/2�

�� cot �i,1 cos �t,1 sin��1/2�
, �68�
1 + 1/n2 − 3 sin2��1/2�/sin2 �i,1
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which manifestly has no singularity until the geometrical fo-
cus where �Rm,Q2

�1+s1→0. The minus sign comes from the
manually inserted phase shift of the first ray. �All aforemen-
tioned quantities should be expressed in terms of the angles
�i,1 and �i,2�0 as described in detail in Sec. IV D below.�
The structure of the first two lines in Eq. �68� is general and
is valid for arbitrary axially symmetric systems. D1 is always
finite on the axis, since both the sagittal radius of curvature
and the phase difference �1−�3 are proportional to the dis-
tance �.

Equation �63� is valid even near the focus, since the di-
verging terms D1 /Z and �1−z / f�−1 almost cancel. For z→ f ,
however, the divergence of D1 itself becomes important, as
the nonparaxial ray 1 becomes axial.

In Fig. 6 we show the position and the value of the maxi-
mum of 
E
2 as a function of the refractive index and the
dimensionless product ka, calculated from Eq. �63�. The z
coordinate of this global maximum is denoted with fd �dif-
fraction focus� and the intensity there is 
E�fd�
2. Contrary to
the square dependence for the case of an ideal lens,16 even
for macroscopic spheres the maximum intensity turns out to
be about proportional to ka, in agreement with the general
theory.17

The main contribution in Eq. �63� stems from the Bessoid
integral, that is from the term �T1D1I. Thus, the position of
the maximum can be estimated from condition �35�, i.e.,
�1−�2�3� /4. If the phase difference �1−�2 from Eqs. �66�
and �67� is expressed as a function of �i,1, Taylor expanded
and equated to 3� /4, then we get in the lowest nontrivial
order of the inverse product ka

fd �
a

2

n

n − 1
�1 −� 3�

4ka

n�3 − n� − 1

n�n − 1�
� . �69�

Hence, in the limit of small wavelengths or large spheres the
relative difference between the diffraction and the geometri-
cal focus decreases proportionally to the inverse square root
of ka. The factor 3� /4�2.356 can be replaced by the more
exact Bessoid value 2.327 from Eq. �35�. Expression �69�

FIG. 6. Left: Diffraction focus in units of the sphere radius as a
function of n and ka �contour lines from top to bottom go from 1.1
to 3.0 in steps of 0.1�. Right: Intensity enhancement at fd �contour
lines from bottom left to top right are 20, 50, 100, 200, 500, 1000
and 2000�.
approximates the position of the maximum within an error of

235401
	5% for ka�100 and values of the refractive index in the
range 1.4	n	1.6. The transcendental phase difference con-
dition �35�, which holds for large angles, naturally has a
wider range of applicability. With very good accuracy the
diffraction focus also provides the maximum for the absolute
square of the magnetic field, 
H
2�HH*, as well as for the z
component of the Poynting vector S. Note that on the axis
H=Hey and S=Sez.

D. Protocol for the electromagnetic field calculation
behind the sphere

For convenience we summarize the sequence of steps that
should be used for the calculation of the field behind a sphere
irradiated with linearly polarized light on the basis of the
formulas developed above:

�1� Finding the rays: The origin of the coordinate system
is in the center of the sphere. Choose a point P��� ,� ,z�
behind the sphere and numerically calculate the three rays
arriving at P. These rays are characterized by the three inci-
dent angles �i,j �j=1,2 ,3�, found numerically from Eq. �44�,
and numbered according to Fig. 2. All other angles follow
from Snell’s law and from Eq. �45�, respectively. Outside the
cuspoid the rays 2 and 3 are complex.

�2� The geometrical optics solution: Compute the geo-
metrical optics solution for the electric field �61�, which is
the sum of contributions from three rays. The eikonals � j are
calculated from Eq. �47� with Eq. �46�. The geometrical op-
tics amplitudes are given by the Fresnel transmission com-
ponents Tj

�m� �60� and the generalized divergence factors
1 /�Jj �54�, which follow from the radii of curvature
�50�–�53� and the distances sj from the sphere to P �46�. The
conventions for the complex roots shall correctly add up all
individual caustic phase shifts. Ignore the fact that the geo-
metrical field diverges near caustic regions.

�3� Bessoid matching: Starting from the eikonals � j, de-
termine the Bessoid coordinates, i.e., first Z, and then R and
 �28�. Next, compute and correctly order the points of sta-
tionary phase tj �26�, most conveniently using trigonometric
formulas.23 With the generalized divergences �54� and the
Hessians �25� the Bessoid amplitudes Am, AmR and AmZ can
be computed from Eq. �42� for all orders m=0,1 ,2. The
electric field component E�m� associated with the mth order
results from the ansatz �40�. The Bessoid-matched field E is
finally given by Eq. �62�. In the case of a scalar plane wave
�or exactly on the axis� only the order m=0 contributes. Pro-
ceed accordingly for the magnetic field H, employing differ-
ent transmission coefficients in step 2.

�4� The Bessoid integral: The final solution �62� contains
the Bessoid integral and higher-order Bessoid integrals as
well as their partial derivatives. The Bessoid integral I�R ,Z�
can be efficiently computed numerically via the differential
Eq. �12�. The higher-order Bessoid integrals follow from a
recursive relation �39�.

�5� Remarks: The speed limiting bottleneck of this proce-
dure is the finding of the rays �i,j in step 1. The numerical
evaluation of the Bessoid integral is very efficient and in

all other steps analytical expressions are applied. When
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approaching the caustic �axis, cuspoid�, individual
quantities—the geometrical optics amplitudes—diverge but
their combinations remain finite. In our calculations we ob-
served perfect numerical stability up to distances from the
caustic of the order of 10−5 times the sphere radius, which is
more than enough for any practical purposes.

E. Comparison with the theory of Mie

We presented a general way to match geometrical optics
solutions with the Bessoid integrals. It can be applied to any
axially symmetric system with the cuspoid topology of
spherical aberration.

For the sphere we can compare our approximate results
with the theory of Mie.15 A main quantity characterizing the
sphere is the dimensionless Mie parameter q�ka. Figure 7
compares the intensity on the axis obtained from the Mie
theory with the Bessoid approximation. The parameters are
as in Fig. 5 and the Mie parameter is q=300, 100, 30 and 10.

We see very good agreement down to q�30 �a /��4.8�.
For q=10 �a /��1.6� the asymptotic behavior far from the
sphere is still correct. However, for small q the characteristic
scale a is no longer large compared to the wavelength � and
geometrical optics becomes invalid.

Next, we compare the off-axis electric and magnetic field
as well as the z component of the Poynting vector, Sz �Fig.
8�. Right behind the sphere �z=a� the agreement is not per-
fect �see Fig. 7�, though all qualitative features are preserved.
Sections at z=1.02a already show good agreement �Fig. 8�
and for z�1.05a the pictures become visually almost indis-
tinguishable. Discussing the quality of these results, one has
to differentiate between the accuracy of the method and the
influence of those factors which can be taken into account,
but were not included into the current consideration.

The accuracy of the Bessoid matching procedure itself
was studied separately for the case of a spherically aberrated

FIG. 7. 
E /E0
2 on the axis. Dashed lines represent the Mie
theory, solid lines are the results of Bessoid matching. The param-
eters are as in Fig. 5 and the cases �a�, �b�, �c�, and �d� correspond
to q=300, 100, 30, and 10, respectively. In dimensional units, for
�=0.248 �m this corresponds to sphere radii of a�12, 4, 1.2, and
0.4 �m.
wave incident onto an aperture. The deviation—defined as

235401-
the maximal relative error of the intensity �
EBessoid
2
− 
Eexact
2� / 
Eexact
2—between the Bessoid matched geometri-
cal optics solution and the corresponding �exact� Rayleigh-
Sommerfeld diffraction integral16 decreases as the aperture
increases. If the aperture is large enough, the deviation is
below 10−3 for spherical aberration strengths and wave vec-
tors approximately corresponding to the focusing by spheres
studied in Figs. 7 and 8.

For the sphere, for all investigated Mie parameters 30

q
300, the deviations from the exact Mie solution are
about ±5% in those regions where the intensity is not very
small �including the caustic axis and cuspoid�. A detailed
analysis indicates that this deviation originates from several
factors:

�i� Influence of the finite size of the sphere. There exist
diffractive contributions from creeping rays38 propagating
along the sphere surface. They can in principle be accounted
for at the expense of the simplicity of the procedure, essen-
tially by considering the interference of the Bessoid field
with these additional rays. This results in oscillations which
can actually be seen in the Mie curve on the right side of the
Bessoid tail in Figs. 7�a� and 7�b�.

�ii� Rays entering the sphere undergo multiple interior re-
flections. Some of them satisfy resonance conditions, accu-
mulate significant energy inside the sphere and refract out-
side. This produces an additional field behind the sphere, in
particular the intensity becomes nonzero in the regions of
geometrical shadow for the directly transmitted rays used in
the Bessoid matching. Here again, one can �in principle�
study such multiply reflected rays separately and add them to
the Bessoid field, but their contribution to the focusing prop-

FIG. 8. Normalized 
E
2, 
H
2 and Sz in the normalized x ,y plane
for z=1.02a calculated with Bessoid matching �left� and with the
Mie theory �right�. The parameters are the same as in Fig. 5.
erties of the microspheres is of secondary importance.
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�iii� Finally, very close to the sphere surface at distances
of the order of a fraction of �, there exist evanescent contri-
butions, which are taken into account in the Mie theory, but
are obviously absent in the Bessoid matching procedure.

Thus, the quality of the Bessoid matching in the most
interesting regions near caustic surfaces is quite satisfactory.
It rectifies the divergences of geometrical optics, which is
asymptotically correct for large q in nonsingular regions of
space. Clearly, the procedure has to be extended whenever
contributions from rays other than those three used for
matching become significant.

The field distribution behind the sphere has a rich fine
structure �Fig. 8� which our geometrical approach helps to
clarify. It is known that the ring-type field enhancement cor-
responds to the cuspoid caustic, having the approximate ra-
dial distance10

�c = a
�4 − n2�3/2

3�3n2
. �70�

Our approach explains the double-peak structure of 
E
2
along the direction of polarization. It is related to the axial
field component Ez and can be understood in terms of geo-
metrical optics. On the axis, the Ez components from the rays
1 and 3 point into opposite directions and cancel, having an
effective phase difference of �. Off the axis, ray 1 underwent
a caustic phase shift of −� /2 when crossing the axis, which
makes the condition for constructive interference: �1−�3
=3� /2. Then, according to Eq. �34�, the peak occurs at the
radial distance

�p �
�1 − �3

2k sin �
=

3

8

�

sin �
. �71�

More details on the derivation are given elsewhere27 together
with the refined coefficient 0.293 �instead of 3/8� obtained
from the Bessoid asymptotic �E8�.

Double-peak structures have been observed in nano-
patterning experiments8,39,40 and were semiquantitatively ex-
plained on the basis of the Mie solution.9 In an actual experi-
ment it may depend on the laser pulse parameters and the
properties of the patterned material whether the Poynting
vector or the electric field is responsible for the patterning
process. For small spheres this double peak effect can be
understood using the near field pattern for a scattering
dipole.9,10 The present explanation �for sphere diameters of a
few wavelengths and larger� results in the same orientation
of the maxima and thus these two limiting cases cover al-
most all range of sphere sizes. Similar polarization depen-
dence of the field distribution in focal regions can be used to
improve the resolution.41

V. CONCLUSIONS

We described theoretically arbitrary axially symmetric ab-
errated focusing and studied light focusing by microspheres
as an example. Following the method of uniform caustic
asymptotics,17 we introduced a canonical integral describing
the wave field for the given cuspoid ray topology. This
Bessoid integral appears naturally in the paraxial approxima-
235401-
tion. In some regions �off the caustic or exactly on the axis�
it reduces to simple analytical expressions. In other regions
we efficiently computed this highly oscillatory integral via a
single ordinary differential equation.

For arbitrary axially symmetric focusing, coordinate and
amplitude transformations match the Bessoid wave field and
the solution of geometrical optics. The caustic divergences of
the latter are removed thereby. For vectorial problems with
angularly dependent field components, higher-order Bessoid
integrals are used for the matching procedure. The formulas
significantly simplify on and near the axis. An approximate
universal condition for the diffraction focus can be given in
terms of phase differences. Here, the concept of caustic
phase shifts is of main importance.

The central part of the Bessoid integral is essentially a
Bessel beam26 with a variable cross section due to the vari-
able angle of the nonparaxial rays. Its local diameter is al-
ways smaller than in the focus of an ideal lens with the same
numerical aperture. Besides, the largest possible apertures
can be physically realized, which is hardly possible with
lenses. All this is achieved at the expense of longitudinal
confinement.

As an example the focusing of a linearly polarized plane
wave by a transparent sphere is studied in detail. We calcu-
late the geometrical optics eikonals and divergences, incor-
porate Fresnel transmission coefficients and perform Bessoid
matching. Using the general theory, simple expressions for
the light field on the axis and for the diffraction focus are
derived. The two strong maxima in the intensity observed
immediately behind the sphere can be explained as well.

Finally, the results of the Bessoid matching procedure are
compared with the Mie theory. The agreement is good for
Mie parameters ka�30. Near the sphere the correspondence
is worse due to unaccounted evanescent contributions.

The developed formulas can be directly applied in other
areas of physics where nonparaxial axially symmetric focus-
ing is of importance, e.g., acoustics, semiclassical quantum
mechanics,42 flat superlenses based on left-handed mater-
ials,43 radio wave propagation, scattering theory,21 chiral
conical diffraction,44 etc.

Concluding, let us briefly enumerate several possibilities
to extend and refine the developed formalism. Weak absorp-
tion can be incorporated easily, for it just changes the ampli-
tudes along the rays and the transmission coefficients. Strong
absorption additionally modifies Snell’s law of refraction,
still preserving the axial symmetry. One can consider incom-
ing radially or azimuthally polarized beams, which are
known to produce better resolution than linear polarization.41

The diffraction of light from regions beyond the sphere ra-
dius can be incorporated by considering the interference of
the Bessoid field with creeping rays.38 For other geometries,
in particular finite apertures with sharp boundaries, edge
rays, the Rubinowitz representation,16 or an approach based
on catastrophe theory45 have to be used. Such corrections
become relevant, for example, for the ray structure and the
field distribution immediately behind spheres with a refrac-
tive index n	�2. Finally, one can calculate the interference
of the diffracted light with the original incident wave or the
interference of the light refracted by several spheres or arrays
of spheres. The latter yields interesting secondary patterns46

47
related to the so-called Talbot effect.
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APPENDIX A: NEAR AXIS APPROXIMATION FOR THE
BESSOID INTEGRAL

We make the substitution w��1
2 in Eq. �2�

I�R,Z� =
1

2
�

0

�

J0�R�w�e−i�Zw/2+w2/4�dw . �A1�

Near the axis �small R� the Bessel function is slowly varying
compared with the exponent. The integral will have signifi-
cant contribution only from the region in which the expo-
nent’s phase is stationary, i.e., regions near w=−Z. We con-
sider the most interesting caustic part of the axis for which
Z
0. In a lowest order approximation the Bessel function is
considered as constant near the stationary point −Z and can
be pulled out of the integral. The phase can be written as a
complete quadratic form. With the full square of v��w
+Z� /2

I�R,Z� � J0�R�− Z�eiZ2/4�
Z/2

�

e−iv2
dv . �A2�

The remaining integral can be expressed in terms of the
complementary error function25 erfc �of complex argument�
and hence we arrive at Eq. �11�.

For Z�0 the point w=0 should be taken as a stationary
edge point of the integration.24 And the near axis approxima-
tion �11� remains valid as long as the Bessel function is set to
J0�0�=1.

APPENDIX B: AN ORDINARY DIFFERENTIAL
EQUATION FOR THE BESSOID INTEGRAL

We derive the paraxial Helmholtz equation

IRR +
1

R
IR + 2iIZ = 0, �B1�

as well as the following ordinary differential equation for the

Bessoid integral

235401-
IRRR +
1

R
IRR − � 1

R2 + Z�IR + iRI = 0. �B2�

Indices denote partial derivatives. Both equations can be re-
written in the compact form

L + 2iIZ = 0, �B3�

LR − ZIR + iRI = 0, �B4�

where L is the radial Laplacian

L � IRR +
1

R
IR. �B5�

We begin with the proof of Eq. �B1� and state that we may
differentiate under the integral sign, since the partial deriva-
tives of the integrand exist and are continuous functions.
Starting from the Bessoid integral in the polar representation
�2�, its integrand can be written as

G � �1J0�R�1�E �B6�

with the abbreviation

E � e−i�Z�1
2/2+�1

4/4�. �B7�

The �multiple� partial derivatives are

GR = − �1
2J1�R�1�E , �B8�

GRR = −
�1

3

2
�J0�R�1� − J2�R�1��E , �B9�

GZ = − i
�1

3

2
J0�R�1�E . �B10�

Here we used the derivative formula for Bessel functions25

d

dt
Jm�t� =

Jm−1�t� − Jm+1�t�
2

�B11�

with m=0 to obtain Eq. �B8� and m=1 for Eq. �B9�. Note
that J−1�t�=−J1�t�. Applying the recurrence relation for
Bessel functions25

Jm+1�t� = − Jm−1�t� +
2m

t
Jm�t� , �B12�

one can eliminate J2 from Eq. �B9�. And then it is enough to
notice and verify that

GRR +
1

R
GR + 2iGZ = 0. �B13�

This proves Eq. �B1�.
For the proof of �B2�, we need to note that its left hand

side can be expressed as the integral of a partial derivative

H � �
0

� �

��1
�i�1J1�R�1�e−i�Z�1

2/2+�1
4/4��d�1. �B14�

With the help of Eqs. �B11� and �B12� both the left hand side

of Eq. �B2� and H become

12
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�
0

�

�iR�1J0�R�1� + �1
2�Z + �1

2�J1�R�1��Ed�1. �B15�

Thus, in order to prove Eq. �B2�, it is enough to show that
H=0. This follows from the Newton-Leibniz formula ap-
plied to the �definite� integral �B14�:

H = �i�1J1�R�1�e−i�Z�1
2/2+�1

4/4��0
� = 0. �B16�

The lower bound at 0 vanishes for obvious reasons. For the
upper bound at � one assumes an infinitely small imaginary
part in front of the fourth order term in the exponent: �1

4

→ �1− i���1
4 with ��0. This completes the proof of the dif-

ferential Eqs. �B1� and �B2� for the Bessoid integral.

APPENDIX C: THE NEAR AXIS BESSOID COORDINATES

Near the axis the phases of the rays can be Taylor ex-
panded. From Fig. 9 one infers that up to the first order in �
the phases can be written as

�1 � �np + k� sin � , �2 � �p, �3 � �np − k� sin � .

�C1�

Here �np and �p denote the phases of the nonparaxial rays
and the �par�axial ray �with �=0� and ��0 is the angle of
ray 3 with the axis.

We insert these phases into the exact expressions for R
and Z in Eq. �28�, Taylor expand the result with respect to �
and resubstitute �np���1+�3� /2, �p��2 and k� sin �
���1−�3� /2 from Eq. �C1�. This yields Eqs. �32� and �33�.

APPENDIX D: THE ON AXIS FIELD

Here we derive a simple on axis expression for the
Bessoid-matched field U �21�, namely Eq. �37�.

On the axis and inside the cusp �=0 �R=0� and z	0
�Z	0�. The stationary points, given by Eq. �26�, are

t1 = − �− Z, t2 = 0, t3 = − t1. �D1�

FIG. 9. Near the axis, the phases of the rays 1 and 3 differ from
the phase of the nonparaxial rays np �crossing the axis at the same
z� by ±k� sin �, whereas the phases of ray 2 and the �par�axial ray
are the same in first order. The nonparaxial ray and ray 3 cross the
axis at an angle ��0.
Then, the amplitude A in Eq. �31� simplifies to

235401-
A = U0,2

�H2

�J2

, �D2�

because on the axis the ratios �H1,3 /�J1,3 are both finite and
the corresponding other terms disappear upon multiplication
with t2=0. Due to the restriction to the lit region �Z	0�, all
rays are real and Eq. �24� holds. By virtue of Eq. �9�
det H2=Z2, and due to Eq. �10� sign H2=2, one finds

�H2 = iZ �D3�

and thus

A = i
U0,2Z
�J2

. �D4�

This approximation for the amplitude A is valid up to the
focus �Z=0�. As ray 2 converges like the inverse distance
from the focus, �J2 is proportional to Z.

The amplitude AR in Eq. �32� vanishes due to t3=−t1 and
the fact that

�H1

�J1

=
�H3

�J3

, �D5�

which means that rays 1 and 3 have equal amplitudes and
that the caustic phase shifts are in accordance with the sig-
nature of the Hessian. Consequently,

AR = 0. �D6�

With Eqs. �D1� and �D5� the amplitude AZ reads

AZ =
2

Z
�U0,1

�H1

�J1

− U0,2

�H2

�J2
� . �D7�

The first term is nontrivial. Both �H1 and �J1 are zero on the
axis, but their ratio is finite and well defined. Indeed, the
Taylor expansion of Cardan’s solution t1 in its trigonometric
representation23 yields in the first order in R

t1 = − �− Z +
R

2Z
. �D8�

Therefore, again in first order in R :det H1=2R�−Z. Due to
sign H1=−2 we obtain

�H1 = i�2R�− Z �D9�

and with Eq. �D3�

AZ = 2i
U0,1

�2R�− Z

Z�J1

− 2i
U0,2

�J2

. �D10�

This approximation for AZ holds for small values of R. It is
finite, since �J1 approaches zero as �R for R→0.

For the final representation of the field U, we can substi-
tute the near axis expression for R�−Z �34� into AZ. On the
axis the phase coordinate becomes =�2, which results from
substituting �1=�3 and Z=−2��1−�2 into the correspond-

ing expression in Eq. �28�. This leads to

13
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U = �AI +
1

i
ARIR +

1

i
AZIZ�ei

= �U0,2

�J2

�iZI − 2IZ� +
2U0,1

�2k� sin �

Z�J1

IZ�ei�2.

�D11�

Using the linear relationship between the Bessoid integral
and its Z-derivative Eq. �15�,

iZI − 2IZ = 1, �D12�

we end up with Eq. �37�.

APPENDIX E: HIGHER-ORDER BESSOID INTEGRALS

Higher-order Bessoid integrals �38� appear naturally, if
one expands an arbitrary initial field amplitude on the aper-
ture in a Fourier series

U0��1,�1� = 	
m=0

�

�am��1�cos�m�1� + bm��1�sin�m�1�� .

�E1�

The form of the coefficients am and bm can be seen from a
two-dimensional Taylor expansion in Cartesian coordinates
around the point �0, 0�, rewritten into polar coordinates

U0��1,�1� = 	
m=0

�

	
n=0

m

cmn�1
m cosm−n �1 sinn �1 �E2�

with

cmn �
1

m!
�m

n
�� �mU0�x1�,y1��

�x1�
m−n�y1�

n �
x1�=0,y1�=0

. �E3�

Thus, �1
m is the lowest possible power of �1 which can be

found in the term with exp�im�1�. An additional �1 comes
from the transformation from Cartesian to polar coordinates.

If we define the functions

Ĩm � Imeim�, �E4�

we find that they satisfy the paraxial Helmholtz equation

2iĨm,Z + Ĩm,RR +
1

R
Ĩm,R +

1

R2 Ĩm,�� = 0, �E5�

where Ĩm,��=−m2Ĩm.
Due to Eqs. �B11� and �B12�, one can write the identity

�1
m+2Jm+1�R�1� = −

�

�R
��1

m+1Jm�R�1�� +
m

R
�1

m+1Jm�R�1� .

�E6�

Hence, the recursive relation for the Bessoid integrals, Eq.
�39�, follows:

Im+1 = − Im,R +
m

R
Im, �E7�

i.e., I1=−I0,R�−IR, I2= IRR− IR /R, etc. Using Eqs. �E7� and

�B12� as well as expression �11� for I, one obtains

235401-
Im�R,Z� �
���− Z�m/2

2
Jm�R�− Z�ei�Z2−��/4 erfc�Z

2
ei�/4� ,

�E8�

which is the analytic near axis expression for the higher-
order Bessoid integrals.

While the coordinates and phases �R ,Z ,� remain un-
changed, the derivation of the higher-order amplitudes
�Am ,AmR ,AmZ� requires some insight for m�2. Let us briefly
consider the case m=2. For the matching procedure we need
the asymptotic behavior of I2= IRR− IR /R far from the caustic
regions where R�1 and where it is dominated by the term
IRR. Note that for the matching procedure we need exactly
this asymptotic representation and in the noncaustic regions
only. Thus—although we need the second-order Bessoid in-
tegral I2 on and near the axis, where it vanishes—we shall
use its asymptotic stationary phase expressions far from the
axis for the derivation of the amplitudes. In this region it is
equivalent to the asymptotic of IRR.

In fact, we may generalize this statement to arbitrary or-
der. Due to Eq. �E7� the leading term in the stationary phase
calculation is always

Im → �−
�

�R
�m

I . �E9�

Therefore, the equations for the amplitudes �30� become

U0,j
�m�

�Jj

= �itj�m
Am − tjAmR − 1

2 tj
2AmZ

�Hj

, �E10�

which can be seen from the Bessoid integral’s Cartesian rep-
resentation with the phase �4�:

�−
�

�R
�m

I → �− i
��

�R
�m

I = �ix1�mI . �E11�

Equations �E10� have the same form as Eq. �30� except for
an additional factor �itj�m on the left hand side, proving Eq.
�42�.

APPENDIX F: WAVE FRONT RADII OF CURVATURE
FOR THE REFRACTION ON A SPHERE

Let us consider a point source G and start with the deri-
vation of the meridional radius of curvature �Fig. 10�.

The initial radius of curvature is Rm0�GE, the one after

FIG. 10. Meridional cross section for the determination of the
meridional radius of curvature, Rm. M is the center of the sphere.
refraction is Rm�ED. The infinitesimally neighbored beam

14
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���1� which is refracted in E� �the angles of incidence and
transmission in E are �i and �t, in E� they are denoted �i� and
�t�� also propagates to D. The normals onto Rm0 through E
and onto Rm through E� are g and d, respectively. In the
necessary order the length of the arc EE� can be approxi-
mated by the distance e�EE�. As all angles are small: g
=�Rm0, d=�Rm, and e=�a. On the other hand, we find from
the infinitesimal triangles: g=e cos �i, d=e cos �t. This leads
to

Rm = −
�Rm0 cos �t

� cos �i
, �F1�

where we have introduced a minus sign because the wave is
converging after the refraction. The remaining problem is the
angle � in the denominator. To find � we write the relations
between angles and primed angles

�i� = �i + � + �, �t� = �t − � + � . �F2�

With Snell’s law

�t − �t� = arcsin
sin �i

n
− arcsin

sin��i + � + ��
n

, �F3�

a first-order Taylor expansion in ��+�� yields

�t − �t� = −
�� + ��cos �i

n cos �t
. �F4�

We express � from Eq. �F2�, substitute it into Eq. �F1� and
finally obtain the meridional radius of curvature �48�

Rm =
naRm0 cos2 �t

a cos2 �i + Rm0�cos �i − n cos �t�
. �F5�

For the sagittal radius of curvature we consider Fig. 11.
A ray which emerged from G is refracted in E �incident

angle � and transmitted angle � �. The distance from E to the
i t

Singapore, 2002�.

235401-
intersection H of the ray with the line passing through G and
the sphere center M is the sagittal radius of curvature, as a
neighbored ray, emerging from G and hitting the sphere not
in E but infinitesimally shifted perpendicular to the meridi-
onal plane, will also propagate to H due to symmetry around
the line GM. We have Rs0�GE and Rs�EH. The tangent
theorem states �all angles are in general large now�

tan
� − �

2
=

a − Rs0

a + Rs0
cot

� − �i

2
, �F6�

where �−�i is just the third angle in the triangle GME. Due
to �+�=�i we find

� =
�i

2
− arctan�a − Rs0

a + Rs0
cot

� − �i

2
� . �F7�

In the triangle MHE the sine theorem reads

−
Rs

a
=

sin�� − ��
sin �

, �F8�

where we have again introduced a minus sign due to the
convergence of the refracted wave. Trigonometric transfor-
mations finally give the sagittal radius of curvature �49�

Rs =
naRs0

a + R �cos � − n cos � �
. �F9�

FIG. 11. Meridional cross section for the determination of the
sagittal radius of curvature, Rs.
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