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Abstract. Mass-spectrometry (MS) is a powerful experimental technology for
"sequencing” proteins in complex biological mixtures. Computational methods
are essential for the interpretation of MS data, and a number of theoretical ques-
tions remain unresolved due to intrinsic complexity of the related algorithms.
Here we design an analytical approach to estimate the confidence values of pep-
tide identification in so-called database search methods. The approach explores
properties of mass tags — sequences of mass values (m; m, ... m,), where indi-
vidual mass values are distances between spectral lines. We define p-function
— the probability of finding a random match between any given tag and a pro-
tein database — and verify the concept with extensive tag search experiments.
We then discuss p-function properties, its applications for finding highly reli-
able matches in MS experiments, and a possibility to analytically evaluate
properties of SEQUEST X-correlation function.
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1 Introduction

Mass-spectrometry based proteomics is the driving engine behind an increasingly rich
variety of biological experiments: from a pull-down "hunt" of the protein complexes
to whole cell protein expression profiles. The resulting information flow, while
disparate in nature and usually huge in volume, often has a common structure of the
underlying raw data — individual spectra of short peptides converted into sequences
assigned to them by various algorithms.

In a typical experiment, cellular proteins are cut into relatively short peptides (10-
20 amino acids), and each analyzed peptide results in an MS spectrum as presented in
Fig 1. Peaks are footprints of smaller chemical fragments, where peak position re-
flects each fragment’s mass-to-charge ratio that can be converted to a mass value.
Ions corresponding to the breaking of a peptide bond (two highlighted peaks on the
picture) are called b-ions and their complements to the full peptide are called y-ions.
Typically these two types of ions have relatively high intensity as peptides break more
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easily across peptide bonds. All identification methods utilize this property in some
way, but other types of ions also saturate a spectrum (outnumbering "noble" b- and y-
ions by a ratio of 20:1), and some of them can be very strong as well.
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Fig. 1. MS experimental data. Highlighted peaks are formed by 2 b-ions; the distance between
them is the mass of N residue at the right terminus of the partial peptide SELTAIN.

Peptide identification aims to infer peptide amino acid sequence from its spectrum.
Database search methods [1-5] dominate the field, with an overwhelming majority of
experiments using one of them. In database search methods, a peptide is assumed to
belong to a known protein database (DB). The SEQUEST program (developed in
John Yates group, [2]) uses the following algorithms (some details are simplified):

(1)  The experimental spectrum is re-calibrated, so several of the strongest peaks
are given an intensity of 1, and other peaks are rescaled accordingly.

(2)  The program forms a large list of candidate peptides selected from the target
protein DB.

(3) Theoretical spectra are generated for each of the candidate peptides. They
usually include only b- and y-ions, and only ion positions are important, as
currently there is no reliable way to model relative peak intensity.

(4) Theoretical constructs are matched against the experimental spectrum to
compute a matching score. The X-corr reflects the total intensity of experi-
mental peaks that were matched within experimental precision of theoretical

positions. The candidate peptide with the highest X-corr value is selected as
the output solution.

A typical proteomics experiment incorporates millions of individual peptide identi-
fications, and the reliability of individual assignments is crucially important. We have
described the SEQUEST algorithm, because (1) it is hugely popular (probably ~ 50%
of the market); and (2) many other search methods were inspired by SEQUEST and



102 N. Arnold et al.

work in a similar fashion. The description is also instructive in regards to algorithm
complexity and challenges that one needs to overcome to estimate the reliability of
the answers. Every spectrum will be assigned some candidate peptide, but what cutoff
of the X-corr values would guarantee, for example, that 95% of the assignments are
correct?

The standard way of addressing this problem is by introducing an artificial nega-
tive control into the experiment [6,7,8]. The identification procedure is run against a
database with two parts: a "true" DB of all protein sequences, which actually were
present in the source sample, and "false" one, containing negative controls (also called
decoy DB). The decoy database contains proteins that cannot be possibly matched by
the sample in question. Several research groups extensively investigated the best
approaches to create negative control DB and use them for learning reliable values of
the X-corr [9,10,11,12,13,14]. The matches to the decoy part are incorrect by design
of the experiment, and X-corr cutoffs can be mapped to the sensitivity values by as-
suming, for example, that the total number of false matches was twice as high as ob-
served in the false DB.

However, this approach has numerous drawbacks. The X-corr values recorded for
a given spectrum depend on many factors: size of the database (in a non-trivial way
that is hard to figure out), the particular type of MS device, the type of precursor ion,
contaminations (MS experiments are ultra sensitive), and even on the organism, that
was the source of the tested sample. On an intuitive level it is clear that the X-corr
cutoff should be determined by parameters of a particular spectrum. But this road has
insurmountable difficulties for an empirical approach, as there is no obvious way to
divide spectra into classes.

Strictly speaking the mapping of the X-corr to the probability has to be done for
each modification of the experimental system, but it is not an easy demand. The prac-
tical approach is to take a "high enough" X-corr cutoff and hope that the fraction of
correct matches will not fall too low. Usually only a small fraction of spectra passes
the required cutoff (10-20%), and dissatisfaction goes both ways: it is often a rather
small "crop", and it is still not obvious how reliable the obtained matches are.

We propose to explore a different approach to the problem by examining database
matches of somewhat simpler objects, which we call mass tags. The idea of "tags"
was pioneered by Mann’s group [15] and further developed in [16]. We derive an
analytical expression for the probability of tag random match and explore the proper-
ties of the corresponding function. We also propose a database search model that
gives an analytical estimate for the fraction of correct matches and outline how SE-
QUEST X-corr function can be evaluated in the same mathematical framework.

2 Probability Function of Peptide Mass

We define mass tag as a sequence of mass values (m; m, ... my), where individual
values (called connector masses or simply connectors) are distances between spectral
lines in a specific peak subset. One such subset and the corresponding mass tag of
length 4 are illustrated for the spectrum in Fig. 1. We define a match between tag and
database in a different way than match between spectrum and database is usually
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defined. A DB entry seq matches a tag (m; m, ... m,) if it contains n consecutive
protein sequences (seq; seq; ... seq,), where each sequence seqy has a mass my within
experimental precision of the MS device (for our purposes we assume it to be 0.5 Da).

2.1 P-Function for a Single Connector

To explore properties of tag matches we will introduce another definition, which is
central for all subsequent developments. We define peptide probability mass function
— p-function — as probability to observe a peptide in the window (m-dm, m+dm)
starting at an arbitrary point of the protein database. This probability is a function of
both m (mass of the desired peptide) and dm (detection precision), but it does not
depend on the size of the database. For example, if m is the mass of amino acid Ala
and dm=0.5 Da, then the probability is equal to Ala frequency in the database.
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Fig. 2. The contribution of different steps into p-function distribution: green curve - single, blue
—double, cyan - triple, magenta - 4 residue steps, and yellow - 5. The overall value of the theo-
retical p-function is shown in red.

The p-function dependence from dm is an interesting topic that deserves a separate
discussion. For the rest of the paper we assume dm=0.5 Da. This value is a good
choice for two reasons: (1) 0.5 Da is the precision of the most common mass-
spectrometers used in proteomics research; (2) peptide masses are naturally concen-
trated to the centers of so-called Mann bins [17,18,19], which are separated by ~1Da
distance on the mass axis. In this sense masses of all peptides, derived ions, and dis-
tances between ions are nearly integer (Mann's bin mass is ~1.0005 Da). Tags have
connectors that could be expressed as an integer number of Mann bins, and p-function
can be computed for m values centered on such bins with the dm=0.5. However it

is worth to note that our methodology will straightforwardly accommodate any value
of dm.
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Fig. 3. Distribution of p-function values for 500 mass connectors on log;, scale. The Y-axis bin
size was 0.1 with bin centers at 0.05, -0.05, -0.15, etc. The distribution contains data for 321
connectors with non-zero p-function values.

Remarkably the values of p-function are almost independent of all protein DB
properties, except frequencies of 20 standard amino acids. We have demonstrated this
independence by computing p-function recursively without keeping track of particular
amino acid combinations leading to a given mass to avoid combinatorial explosion.
The process is known as a renewal process [20], as was also pointed out in [16]. The
calculations start from bins filled with single amino acids and continue until bin num-
ber of 2000.

One can also compute an "experimental" p-function for a given database. One just
has to generate all peptides, compute their masses, and figure out occupancy frequen-
cies for all [m-dm, m+dm] windows of interest. For example, for human genome DB
the p-function can be obtained as a histogram of approximately ~2x10* values (ap-
proximate number of peptides in range mass 0 to 2000), which are distributed over
2000 bins. After normalizing histogram by the DB length, we obtained p-function that
was almost indistinguishable from the theoretically computed (shown in Fig. 2). Some
of the bins are empty. They correspond to mass connectors that could never be ob-
served for a true protein tag. There are many such bins at masses below 200, as this
region is occupied mostly by short amino acids combinations.

It is instructive to understand why the model that assumes total independence of
the consecutive amino acids provides such a good approximation to reality, while it is
known that the real protein text has short and long range sequence correlations. The
reason is a "combinatorial elimination" of the correlation artifacts. For example,
though combinations like AAAA, QQQQ, and similar ones are much more frequent
than it would be expected from uncorrelated model, their contribution changes the p-
function values only a little, because there are much more other combinations in the
same mass bin, which do not show any statistical bias.

The distribution of log;o p values for all 321 non-empty bins found in the interval
of m values between 0 and 500 is presented in Fig 3.
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2.2 Probability of a Random Database Match

Calculated p functions allow us to compute the filtering power of an arbitrary tag (x;
X ... X;), where 1 is the length of the tag. As we assume that there are no correlations
between adjacent connectors (highly reasonable assumption for almost all connec-
tors), the total probability of a random realization for a general tag is:

Pn= Hp('xi)

i=1

When the tag p-function is calculated, it is straightforward to estimate the probabil-
ity of a random match for a given database. As the match can start from any of Np
amino acids in the database, the average expected number of matches is ¥ =N, p; .
The distribution over the observed number of m matches is binomial with the prob-
ability p,; and the number of Bernoulli trials N p (size of the DB), but since p; is

small, and IV, is large, it is possible use its Poisson approximation:

m

r

pim)y=—e"
m!

The probability to observe at least one random match is:

Puso =1—=p(0)=1-€e"=N,p,

The last expression is an approximation for the case of strong filtering

N,p;; <<1. The same result can be obtained from the Binomial distribution.

Pyso OF @ complementary quantity p(0)=e" =1—N,p,, is a natural measure

of database match significance. For a single tag, the match can be considered as non-
random with the confidence level p(0).

We have tested our theory by conducting tag match experiments for 10* mass tags
that were generated in the following way:

(1) Random tag length [ is chosen from values 2,3,4 and 5.

(2) Random integer numbers are chosen from the interval 57 and 2000, and con-
verted to real values by random selection from centers of the corresponding
Mann bins with Gaussian accuracy 6=0.15 (corresponds to the observations on
0.5 Da accuracy devices). These numbers form the testing tag.

(3) Tag probability py is calculated. If pp=0, the tag is discarded, and we return to
the step 2.

The results of the tag matches against a large DB (Np~12x10°) are presented on
Fig. 4. Here, the p-function was constructed from the experimental statistics, but the
theoretical function yields similar results. Both the expected and the observed number
of matches for the tag of given length span more than 2 orders of magnitude (red,
green dots), but, nevertheless, there is a very high correlation between the two.
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Fig. 4. Log-Log plot of experimental vs. theoretical number of matches. Human proteome DB
(Np=12x10°). Tag’s lengths are shown in color: red (2), green (3), blue (4), cyan (5). Solid
lines show the diagonal and the confidence ranges.

Nevertheless, the figure reveals appreciable number of overmatched tags. The con-
fidence ranges at both ends (black curves) are at 10™ level, while the total number of
tags was 10%, so that all points beyond this range are statistically significant. An ap-
preciable amount of such tags is of length 3 (green) or 4 and even 5 (blue, cyan). In
some typical cases, the tag of length 3 with the expected number of matches of about
6 demonstrates about 30 of them, which is of course highly improbable. Such cases
were investigated and all of them appeared to match identical peptides, resulting from
homologies present in any real database.

Fig. 4 contains several unexpected lessons for mass spectrometry identification
methods. For green points the number of expected and observed matches concen-
trates around log-value 1 (ten matches). The green points correspond to tags of 3
mass connectors or, in other words, containing just 2 real ions; and DB size here is
larger than in a typical MS experiment. It means that in a real experiments it may
be sufficient (in many cases) to find just two true ions to uniquely identify underly-
ing peptide.

2.3 P-Value for High throughput Identification

The calculated probability of random tag matches provides an immediate opportunity
to compute the "p-value" of peptide identification in high throughput tag search. Let
us consider an asset of tags T={t;} generated by some tag-selecting algorithm. For
each tag we will consider 3 outcomes:

(1) No match: there is no place in the database, where all imposed constraints are
satisfied simultaneously
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(2) Correct match: tag has matched the correct peptide. By definition it is a single
match, and it always happens if the database is complete and does not include
mistakes (as we assume everywhere in this paper)

(3) Random match(es): one or more matches that do satisfy all connector condi-
tions. This outcome is not mutually exclusive with outcome (2). Generally, it
is possible to have a correct match together with several random ones.

Assuming that for all tags r; << 1, we will get a number of random matches for the
whole set Ningom =21;. The sum must be computed through all tags, including those
that were never matched. Combining this sum with the observed total number of
matches M, we can write a formula for the algorithm sensitivity C, i.e. fraction of
correct matches over the total number of matches:

o M=2n
M

This estimate will work for any tag-generating algorithm and for any database. It
does not require machine learning procedures or an adaptation to a particular data-
base. It also accounts for the precision of ion detections, as well as other possible
constraints on peptides (such as tryptic or nontryptic parent peptide). The only re-
quirement is a complete separation between the process of tag construction and tag
matching. The part responsible for tag generation should not have "backdoor" access
to the database and use only information contained in the spectra itself to generate
the tag.

Tag based approaches open new algorithmic possibilities for analysis of the pro-
teomics spectra. Our analysis shows that many different strategies can be pursued, but
one has to take into account that informational value of tags differ by 4 (!) orders of
magnitude, and it is true even inside the group of tags of length 5. It also seems un-
wise to consider very few tags in the searches, as the number of random matches can
be tightly controlled.

2.4 Computing SEQUEST X-Corr Values

Now we can propose a possible way to calculate analytically "black box" of the SE-
QUEST X-corr function. We aim to estimate the following: for a given spectrum S
and a given database DB, which is a decoy database for the spectrum, find probability
to obtain an X-corr value above of a given cutoff CT. The calculation can be accom-
plished by the following algorithm:

(1) Recalibrate spectrum by the usual SEQUEST procedure;

(2) Determine all groups of peaks that have sum of the recalibrated intensities
above CT;

(3) Calculate p;— p-function value for tags formed by each of those groups. Each
subgroup forms a single tag. In addition to all real peaks, two "pseudo" peaks
positioned at the zero mass and at the parent mass are added.

(4) The sum Xp; provides a very good estimate that one of those scenario will real-
ize, and the search procedure will detect an X-corr above CT. More precise es-
timation can be obtained by considering dependencies between overlapping tags.
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3 Conclusions

We presented a rigorous mathematical formalism quantifying the probability of ran-
dom DB matches for arbitrary tags extracted from the tandem MS spectra. It is shown
that the tags consisting of ions separated by some hundreds of Da are in many cases
more advantageous then tags consisting of shorter connectors. For example 3-ion tags
(and in some cases even 2-ion tags) may suffice for an unambiguous identification in
the non-redundant human DB. Developed approach allows a reliable quantification of
the expected probability. The random match probabilities for the tags of similar length
may differ by several orders of magnitude and are log-normal distributed.

The observed number of random DB matches obeys the Poisson distribution with
the mean value calculated as the product of probability of realization for the given
mass tag and the database size. This holds even for the tags that differ by several
orders of magnitude in the random match probability and observed number of
matches. The deviations from this law are shown to be almost exclusively due to
homologies present even in the curated non-redundant databases.

Possible extensions of suggested approach include generalizations to arbitrary ex-
perimental accuracy, sequence correlations, consideration of database errors, as well
as theoretical estimates for background values in many scoring functions currently
existing in the field (including SEQUEST X-corr function).
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