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Electrical actuators made from films of dielectric elastomers coated
on both sides with stretchable electrodes may potentially be
applied in microrobotics, tactile and haptic interfaces, as well as
in adaptive optical elements. Such actuators with compliant
electrodes are sensitive to the pull-in electromechanical instability,
limiting operational voltages and attainable deformations. Elec-
trode-free actuators driven by sprayed-on electrical charges were
first studied by Röntgen in 1880. They withstand much higher
voltages and deformations and allow for electrically clamped
(charge-controlled) thermodynamic states preventing electrome-
chanical instabilities. The absence of electrodes allows for direct
optical monitoring of the actuated elastomer, as well as for design-
ing new 3D actuator configurations and adaptive optical elements.

electroactive polymers ∣ dielectric materials ∣ dielectric breakdown ∣
adaptive optics ∣ Maxwell stress

Dielectric elastomer actuators (DEAs) consist of synthetic
elastomer films sandwiched between compliant electrodes.

For operation, the actuators are connected to a driving voltage
source. They emerged as one of the most promising technologies
for soft matter–based electromechanical transduction since their
discovery by researchers from Stanford Research Institute (1).
Coulomb forces between the electrodes squeeze the elastomer
in the thickness direction and cause the incompressible elastomer
to expand in area. Such “deformable capacitor” designs have
shown a cornucopia of potential applications, such as artificial
muscles (2) and other bionic applications (3), complex minimum-
energy actuators with three-dimensional movements (4–7),
energy harvesters (8, 9), adaptive optical elements (10), etc.; com-
mercially available adaptive optical elements are described, for
example, at http://www.optotune.com. Deformable capacitors
are always sensitive to the electromechanical pull-in instability
(11–14), which has been first reported to limit the apparent
breakdown voltage of soft materials (15), and which has been
beautifully demonstrated with closely spaced soap films, which
easily deflect measurably under high voltages (16). When the
elastomer actuator is subject to a voltage, the elastomer thins
down. Thereby, the same voltage induces an increasing electric
field in the elastomer and so an increasing attractive force
between the oppositely charged electrodes. At the pull-in voltage,
this positive feedback causes the elastomer to thin down drasti-
cally, finally resulting in electrical breakdown. The pull-in
instability is prevented when the elastomer actuator is operated
in a charge-controlled mode, because in this case no positive
feedback mechanism increases the electric field in the elastomer.

Electrical deformation of solid materials was observed shortly
after the invention of the Leyden jar by Fontana, as noted by
Volta (17). Such electrical changes in the volume of the Leyden
jar were the subject of intense investigations in the late 19th
century. Quincke, for example, experimented with Leyden jars
made from natural caoutchouc and reported electrically induced
volume changes of the jar, which he ascribed to a volume increase
of the caoutchouc, roughly proportional to the square of the
potential difference between the inner and outer surface of
the jar (18). Röntgen criticized Quincke’s findings and intro-
duced a simple experiment that illustrates the electrical deforma-

tion of a stretchable body (19). Röntgen used a 16-cm-wide and
100-cm-long stripe of natural rubber, prestretched by a weight to
twice its initial length. Upon electrification with sprayed-on elec-
tric charges, he was able to observe length changes on the order of
several centimeters.

Repeating the experiment of Röntgen with today’s materials
not only provides an elegant experiment for visualizing the large
electrostatic deformations attainable in soft matter, it also allows
electrically clamped (charge-controlled) thermodynamic states
that are otherwise impossible to access with electrode-coated,
electrically free operating actuators (voltage-controlled; origi-
nally the term “electrically free” was defined for crystals where
the electric field E was dictated by the applied voltage due to a
nearly constant thickness; this is not fully valid for soft materials,
but it is conventional to use the term in conjunction with “electri-
cally clamped”). Thereby, pull-in instabilities are prevented, giving
a nearly unlimited actuation range for actuators (only restricted
by the materials breakdown strength). Electrode-free actuator
operation will be illustrated with a bending minimum-energy
elastomer actuator and a tunable optical lens.

Results
Experimental Analysis of Electrode-Free Elastomer Actuators. The
experimental setup for a quantitative analysis of the Röntgen ex-
periment is shown schematically in Fig. 1 and as a photo sequence
in Fig. 2. The framework uses an optical rail system where a char-
ging unit is able to move up and down along the elastomer. The
charging unit contains two opposed combs of needle electrodes
with a separation of 3 cm. Additionally, two opposed Trek Kelvin
probe heads are mounted below the needles to enable surface
potential measurements on the two surfaces of the elastomer,
as illustrated in Fig. S1. Between the optical rails a guideway
is placed to pilot an expanding elastomer strip prestretched by
the attached mass. Details of the experimental procedure and
measurement techniques are described in Materials and Methods
and in SI Text. Three charging cycles at each of the corona vol-
tages of 14, 17, 20, and 23 kV between the two needle setups were
initially used, giving stretch ratios up to 1.15, as depicted in Fig. 3.
By additionally employing three more charging cycles at 23 kV, a
stretch ratio exceeding 1.2 has been achieved. These experimen-
tal results reveal a drop of the surface potential difference with
increasing deformation after passing a maximum of about 17 kV.
This value would be the ultimate limit for conventional voltage-
controlled actuators because it would be followed by the pull-in
electromechanical instability destroying the actuator. Here, how-
ever, the electrically clamped operation enables further deforma-
tion and stable states beyond the limits of pull-in. The set of data
with the highest stretch ratio has more charges on the elastomer
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than the set with the stretch ratio 1.15, although the voltage is
smaller. This results from the thinning of the elastomer (accom-
panied by the increase in its area); thereby, more charges on the
elastomer result in voltages lower than the pull-in value (illu-
strated in Fig. S2). Breakdown fields of elastomers are usually
measured with attached electrodes and are therefore limited
by the pull-in instability (16). Materials-related breakdown fields
are significantly larger, because our experiments show that stable
states beyond pull-in are experimentally accessible. In the subse-
quent theoretical part, these experimental results are analyzed
based on thermodynamic modeling.

To illustrate the extreme deformations achievable by spraying
charges onto the surfaces of an elastomer, we prestretched a
square piece (5 × 5 cm) of the tape to a rigid, circular frame with
a diameter of 10.4 cm (Fig. 4). Two needle electrodes were placed
near the surfaces of the elastomer, and a circular area in the cen-
ter of the frame was marked with a ballpoint pen to make small
deformations visible. To produce the image sequences in Fig. 4,
corona voltages of 0, 10, 15, and 25 kV were used from A to D.
From A to B, the marked ring expands visibly. In C regular sinu-
soidal wrinkles appear, and in D the wrinkles become irregular. It
is obvious that state D can only be realized with an extremely

deformed elastomer. After removal of the corona, the wrinkles
disappear, and the initial configuration similar to A is restored
over several minutes. The experiment is visualized with a video
file Movie S1 provided in SI Text. In this video, a moderate
voltage with the opposite polarity is used for discharging, and
the relaxation takes only a few seconds.

Fig. 5 shows the operation of an electrode-free minimum-
energy bending actuator with large actuation range. In the bend-
ing actuator, a prestretched elastomer is glued on a flexible
frame. Upon release, the actuator bends by minimizing the total
free energy consisting of the bending energy of the frame (which

Fig. 1. Linear elastomer actuator geometry pioneered by W.C. Röntgen in
1880. Charges are sprayed on the elastomer by needle combs under high
voltage.

Fig. 2. The image sequence shows the expansion of the elastomer as a result
of gradual charging starting at the top. The charging voltage used to
produce the pictures was 25 kV.

Fig. 3. Secondary stretch λsx resulting from an incremental increase of the
surface charge Q versus the potential difference measured with Kelvin
probes on both sides of the elastomer stripe. The colored triangles are sets
of data measured in different trials. The solid and dashed curve corresponds
to a fit by the second equation of Eq. 8 as explained in the text. Under
voltage-controlled, electrically free conditions only the solid line corresponds
to stable states limited by the pull-in electromechanical instability. Charge-
controlled, electrically clamped conditions stabilize the equilibria even
beyond the pull-in limitation.

Fig. 4. Radially prestretched elastomer on a rigid frame of 52-mm radius,
charged by corona discharge from two needle electrodes. As the corona vol-
tage increases from 0 V in A up to approximately 25 kV in D, the elastomer
first thins and expands in lateral directions as indicated by an ink dot ring
(B). Regular wrinkles appear in C, and finally extreme irregular deformations
become possible (D). After the removal of corona discharge, the wrinkles
disappear, and the initial configuration similar to A is restored.
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increases with increase in the bending angle) and the stored elas-
tic energy of the prestretched elastomer (which decreases with
bending angle as this decreases elastomer deformation) (5, 6).
For the bending actuator to work, it is sufficient to place two
needle electrodes near the surfaces. In this case, electrostatic
energy adds to the total energy of the elastomer, which makes its
decrease with the bending angle less pronounced (5). Therefore,
the equilibrium bending angle decreases with the applied voltage.
In the image sequences in Fig. 5, we placed a goniometer behind
the actuator to demonstrate the large actuation angle of the
DEA. The corona voltage is increased from 0 V in A to 14 kV
in B, to 17 kV in C, and to 20 kV in D. If the voltage is reset to
0 V, the actuator returns to state A in a few seconds, which can
be accelerated by applying amoderate voltage of the opposite sign
(see video fileMovie S2 in SI Text). FromFig. 5 it is evident that the
total actuation angle is about 100°. The speed of the bending
operation is currently limitedbyourunipolar voltage source,which
prevents fast switching from positive to negative voltages. We
expect the operation frequency of the actuators to be limited to
a few hertz, sufficient for most of the anticipated applications
of such actuators.

Fig. 6 shows a sketch of an adaptive lens with variable focal
length and aperture, and two photos of the device. In the charged
state (Fig. 6 Right) the lens thins down, thereby increasing the
focal length from its initial value of 210 to 266 mm with a corona
voltage of 15 kV. The focal length has been obtained from the
known object distance and magnification. The lens is formed
by a water drop encapsulated between two elastomer layers. In
the images of the device also shown in Fig. 6, the voltage of
the corona needles is increased from 0 V (Fig. 6 Left) to
15 kV (Fig. 6 Right). When the voltage is removed, the lens re-
turns to its initial state in a few seconds. This process is acceler-
ated by applying moderate voltage of opposite sign to the needle
electrodes. The two images reveal the increase of both aperture
and focal length of the lens when actuated.

ThermodynamicModeling.The experimental results shown in Fig. 3
are now analyzed in terms of a rigorous thermodynamic model.
From the theoretical point of view, our approach to the linear
actuator setup proposed by Röntgen is similar to that of Zhao
and Suo (12). There exist, however, several differences of various
importance. We have chosen to use natural physical variables,
such as voltage U and chargeQ, rather than nominal electric field

and displacement that are proportional to them. Furthermore,
even when talking about voltage-controlled systems, we do not
consider charge as a separate variable. Rather, we consider it
as a “fast variable,” which “instantaneously” relaxes to its equili-
brium value dictated by the applied voltage. In reality, this
happens over the resistor-capacitor (RC) time constant of the
system, which is much faster than the time scale of mechanical
deformations. With given voltage or charge, the number of
variables is reduced to two stretch ratios only, which facilitates
modeling. In the subsequent analysis, we proceed analytically
as far as possible, mainly by using equilibrium conditions before
and after corona charging.

Let the initial dimensions of the elastomer be xi, yi, and zi be-
fore the application of a weight with mass m, and xp, yp, and zp
after that (subscript p stands for prestretch) (an illustration can be
found in Fig. S3). Both sets of dimensions can be measured, but
the transition from the i to the p state occurs over a long time
scale and is partly viscoelastic. Therefore, i is not the reference
state for the prestretch in fast measurements with sprayed-on
charges. True prestretch takes place from the auxiliary state 0,
which is observed experimentally when the weight is removed
from the uncharged elastomer to let it relax on the fast time scale,
retaining only the viscoelastic deformation. This is experimentally
challenging, and the dimensions x0, y0, and z0 were not measured
directly.

For this reason, we use 0 rather than i as the initial reference
state in the general development of the theory, but the measur-
able p state for the definitions of physical parameters, such as
capacitance or deformation. The true prestretch λpx ≡ xp∕x0
and similar ratios are important, as they define elastic energy.
We deduce them from indirect measurements as discussed below.
To refer the deformation to the state p, we explicitly separate the
overall stretch λx ≡ x∕x0 into a prestretch and a secondary stretch
(subscript s) λsx ≡ x∕xp, so that λx ¼ λpxλsx for all dimensions x, y,
and z. Of course, all derivations can be done equivalently in terms
of λx only, as was done in ref. 12.

We use the neo-Hookean expression G
2
ðλ2x þ λ2y þ λ2z − 3Þ for

the elastic energy density (21). As we factor out the viscoelastic
part of the prestretch, the shear modulus G here is the fast one.
Because of volume conservation, V ¼ xyz ¼ xpypzp ¼ x0y0z0 and
λxλyλz ¼ λpxλpyλpz ¼ λsxλsyλsz ¼ 1. The Poisson ratio of most

Fig. 5. Photo sequence of an electrode-free minimum-energy bending
actuator with large actuation range. As the corona voltage increases from
0 V in A up to approximately 20 kV in D, the elastomer thins and expands
laterally. After removal of the corona discharge, the initial configuration
(A) is restored.

Fig. 6. Adjustable lens with variable focal length and aperture. A drop of
water is enclosed between two layers of elastomer. As the corona voltage
increases from 0 V (Left) up to high voltage (HV) of approximately 15 kV
(Right), both the aperture and the focal length increase because of the
attraction between the elastomer layers.
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elastomers is close to 0.5 (20); for the 3M™VHB™ tape used, the
manufacturer claims at least 0.49; literature values have indicated
a Poisson ratio of 0.499 (21). However, deviations from incom-
pressible conditions can be taken into account when necessary
by modifying the hyperelasticity function. Volume conservation
allows us to eliminate all z stretch ratios. We express the gravita-
tional energy of the attached weight using the stretch ratio with
respect to the p state: −mgx ¼ −mgxpλsx. The mass m here in-
cludes also half of the mass of the elastomer itself, which is
usually small. Then, the (free) energy of the uncharged elastomer
can be written as

F ¼ GV
2

ðλ2pxλ2sx þ λ2pyλ
2
sy þ λ−2px λ

−2
sx λ

−2
py λ

−2
sy − 3Þ −mgxpλsx: [1]

Because of viscoelastic effects, we cannot take the prestretch ra-
tios λpx;py directly from the experiment, but they should minimize
the free energy at the equilibrium p state. Namely, the minimum
as a function of λsx and λsy should be achieved at values
λsx ¼ λsy ¼ 1. This results in

∂F
∂λsx

����
λsx;λsx¼1

¼ 0 ⇒ GV ðλ2px − λ−2px λ
−2
py Þ ¼ mgxp

∂F
∂λsy

����
λsx;λsx¼1

¼ 0 ⇒ λ2py ¼ λ−1px : [2]

The first expression relates the prestretch to the applied weight
and elastic properties of the material. The second expression
merely signifies that the elastomer is uniaxially prestretched.

Electrostatic Energy. The derivation of the electrostatic energy is
discussed in detail in SI Text, because elastomers with sprayed-
on charges differ significantly from electrode-loaded capacitors.
Charges need not be symmetrical on both sides, so a careful ana-
lysis of the electrostatic problem is required. From experiments
we found that the voltage is about constant in the long (x)
direction and approximately parabolic in the y direction, with
a maximum value U in the middle and half of this value, U∕2,
at the edge. This results in an electrostatic energy:

W ¼ −
ε0εxyU2

2z

Z
1

0

ð1 − y02

2
Þ2dy0|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

A≡43∕60

¼ −
Aε0εxpyp

2zp|fflfflfflfflffl{zfflfflfflfflffl}
Cp∕2

U2λ2sxλ
2
sy

¼ −
CpU2

2
λ2sxλ

2
sy: [3]

Here, Cp (or more accurately Cp∕A) has the meaning of the
elastomer capacitance before the start of corona charging. The
coefficient A is related to the inhomogeneity in voltage, or, more
generally, of thickness and dielectric constant as well. In practice,
Cp is used as a fitting parameter within an admissible range.

For the charge-controlled case, the overall charge on each
surface stays constant. To keep the similarity with conventional
capacitors, we consider half of the total charge difference
between the surfaces, Q. It is related to the voltage via

Q ¼
Z

ε0εU
z

dS ¼ ε0εUxy
z

Z
1

0

ð1 − y02

2
Þdy0|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

A0¼5∕6

¼ ε0εA0Uxy
z

: [4]

The energy can be written as the first expression in Eq. 3 (with
the opposite sign, because the system is closed and the
external source does not perform any work), but one has to group
together the terms that stay constant upon deformation:
Aε0εxy
2z U2 ¼ Aε0εz

2xy ðxy
z
UÞ2|fflfflffl{zfflfflffl}

∝Q2¼const

. The expression in brackets stays con-

stant during the minimization of energy, but the total charge

changes from measurement to measurement, together with the
measured voltage. If we exclude z stretch, this can be expressed
as follows:

W ¼ CpU2

2

fλ4sxλ4syg
λ2sxλ

2
sy

: [5]

Here, U2 and the combination fλ4sxλ4syg in braces originate from
the constant charge and should not be differentiated when we
search for the equilibrium or study its stability. However, λsx
and λsy should be treated as variables when we resolve the result-
ing equations to find the actual stretch values as a function of
measured voltage U or other parameters.

Using the equilibrium relations in Eq. 2, we can now exclude
λpy and either mgxp or the product GV from the elastic energy
expression in Eq. 1. For brevity, we also omit the constant −3
term. Together with the charge-controlled electrostatic contribu-
tion from Eq. 5, this results in the following total free energy:

F ¼ GVλ2px
2

½ðλ2sx − 2λsxÞ þ λ−3px ðλ2sy þ λ−2sx λ
−2
sy þ 2λsxÞ�

þ CpU2

2

fλ4sxλ4syg
λ2sxλ

2
sy

: [6]

The consideration of the voltage-controlled case in Eq. 3 is
similar. We pulled λ2px out of the square brackets to show how
it influences the elastic energy. The leading terms in the square
brackets are then related to the measurable secondary stretch ra-
tio λsx. Using the equality GV ðλ2px − λ−1px Þ ¼ mgxp, which follows
from Eq. 2, one can replace GVλ2px ↔

mgxp
1−λ−3px

. The choice between

these two expressions is that of more physical fitting. The expres-
sion with the mass relies only on the quantities that are directly
measured. But in both cases we have to find λpx, which cannot be
directly measured because of viscoelastic effects.

The equilibrium condition for the energy expression in Eq. 6
corresponds to its minimum with respect to λsx and λsy:
∂F
∂λsx

¼ 0 ⇒ GVλ2px½λsx − 1þ λ−3px ð1 − λ−3sx λ
−2
sy Þ� ¼ CpU2λsxλ

2
sy

∂F
∂λsy

¼ 0 ⇒ GVλ−1px ð1 − λ−2sx λ
−4
sy Þλsy ¼ CpU2λ2sxλsy: [7]

By dividing these equations onto each other one can express λsy
via λsx in equilibrium and then write the transcendental equation
for λsx:

λ2sy ¼ λsx½1þ λ3pxðλsx − 1Þ�

λ2sx½1þ λ3pxðλsx − 1Þ� ¼
�
1 −

λ2sx
Λ2

�
−1∕2

: [8]

Here, we introduced the dimensionless combination
Λ2 ¼ GV

CpU2λpx
≡ mgxp

CpU2ðλ3px−1Þ. It characterizes the ratio of the elastic

and electrostatic energies, and Λ is inversely proportional to
the applied voltage. It is worth noting that it does not depend
on the measured xp value (because Cp is proportional to it).
Let us first consider the small voltage (large Λ) behavior. Taylor
expansion with small secondary strains δsx;sy ≡ λsx;sy − 1 ≪ 1

results in

δsx ≈
1

2Λ2ðλ3px þ 2Þ ∝ U2; δsy ≈
λ3px þ 1

2
δsx: [9]

This implies that the increases in both stretch ratios are propor-
tional to the voltage squared, which can be seen in Fig. 3. The
ratio of these increases (which can be measured) defines the real
nonviscoelastic prestretch λpx. More accurately, it can be found
from the fitting of the first equation of Eq. 8 over a broad range
of voltages. From the fit, a value of λpx ¼ 1.42 (for an initially
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50-mm-wide elastomer tape) is obtained. The quality of the
fitting is documented in Fig. S4. The last experimental point lies
in the wrinkling regime, and the true extension λsy is actually high-
er, making the agreement even better. From the physical point of
view, the λpx value should lie between 1 and the ratio xp∕xi ∼ 3.
Another way to actually measure λpx is to let the uncharged elas-
tomer relax without weight to the 0 state on the fast time scale.
This results in a prestretch ratio λpx ¼ xp∕x0 ∼ 1.5 to 1.6, which is a
reasonable agreement. This method is less accurate however, due
to difficulties of exactly defining the fast time scale. When λpx is
determined, the dependence of secondary stretch on the applied
voltage, λsxðUÞ, should be found from the solution of the second
transcendental equation in Eq. 8. This is done in Fig. 3, which
shows two branches of equilibrium solutions as a function of
measured voltage. The overall charge increases along the curve
as shown by the arrow. The fitting parameter Cp ¼ 533 pF used
for the calculated curves is in reasonable agreement with typical
material values (ε ≈ 4.2) and measured dimensions of the p state
given in Materials and Methods.

Voltage-Controlled Case. It is easy to verify, that the equilibrium
conditions in Eq. 7 are identical for the voltage-controlled case
with the electrostatic energy from Eq. 3. Thus, both cases have
the same dependence of equilibrium secondary stretch on mea-
sured voltage. This is understandable, because elastic and elec-
trostatic forces are fully determined by the geometry and
therefore balance each other in equilibrium at equal values of
variables. This argument does not, however, extend to the overall
behavior of energy in both systems. In particular, the number of
extrema for fixed controlled parameters, as well as their stability
[determined by the Hessian of the free energy with respect to λsx
and λsy (12)] is not the same in both cases. Straightforward,
though a bit tedious, calculations show that the charge-controlled
case always has a single stable equilibrium, whereas the voltage-
controlled case has one minimum and one (unstable) saddle
point. The latter becomes stable in the charge-controlled case
and corresponds exactly to the upper branch of solutions shown
by the dashed curve in Fig. 3. This is in full agreement with the
general results of Zhao and Suo (12). In fact, our results based on
2D Hessians are identical with those of Zhao and Suo where 3D
Hessians were used. All this can be generalized to arbitrary
Legendre-conjugate systems, which will be considered elsewhere.

Discussion
We studied experimentally and analyzed theoretically electrode-
free DEAs first suggested by Röntgen (see the historical discus-
sion in Figs. S5 and S6). In this setup, charges from a corona
discharge are sprayed on both sides of an elastomer. The problem
of electrode degradation and cracking upon stretching is thereby
removed. The absence of electrodes and the trapping of charges
on the surface allow the system to withstand much higher voltages
and electric fields without a global breakdown that disrupts de-
vice operation. This allows one to achieve much higher deforma-
tions and try out complex 3D geometries with large actuation
range, leading to new actuator designs.

Conducting electrodes are inherently equipotential. A free
flow of charges along conducting electrodes automatically leads
to their concentration near the edges and (if present) corners and

protrusions of the structure. In contrast, deposition of charges at
desired positions can be performed dynamically and quite inho-
mogeneously (22). This permits one (in principle) to achieve a
much wider scope of electrostatic contributions to the DEA en-
ergetics, which may become especially important for complex 3D
geometries. In particular, trapped charges (which do not redistri-
bute freely toward the edges of equipotential surfaces) may
contribute to additional lateral Maxwell stresses and larger
deformations.

The elastomer without electrodes is transparent and can be
monitored using optical techniques. In addition, it can be used
to build adaptive optical elements; as an example, we demon-
strated lenses with variable focus and aperture based on the
Röntgen setup.

From the theoretical point of view, such a setup represents a
charge-controlled case, disconnected from the external source,
with thermodynamics and energetics different from that of
conventional DEAs. States with extreme deformations, which
are unstable when the electrodes are present, are stabilized
and become accessible for experimental observations. This can
be used for materials testing and characterization under severe
conditions essential for a safe operation of DEAs. Additional
lateral stresses and global potential energy terms may appear
because of the trapping of charges on the elastomer surface. This
has been addressed mathematically.

By comparing stretches in both lateral directions, we were able
to factor out viscoelastic effects and achieve a theoretical descrip-
tion that is virtually free of fitting parameters. Further work may
go toward lowering the voltage and miniaturization of the system
(for example, using thinner elastomers and carbon-nanotube
field emitters) and toward deeper analysis of 3D configurations,
including wrinkling.

Materials and Methods
The elastomer samples used for the measurements in corona-charging
experiments were 100-mm-long, 50-mm-wide, and 1-mm-thick stripes of a
3M™ VHB™ 4910 acrylic elastomer tape. Upon loading with a weight of mass
m ¼ 150 g, they typically expand within 24 h to 310 × 28 × 0.576 mm. The
relaxation time of 24 h allows the viscoelastic drift of the VHB™ elastomer
tape to level off. The following experiments occur on short time scales
(minutes) where viscoelastic effects can be ruled out.

The corona needles were connected to a dc high-voltage power supply
(model HCL 140–35000, provided by F.u.G. Elektronik GmbH). To maximize
the homogeneity of the surface charge distribution in the vertical direction,
we moved the charging unit up and down slowly (one cycle ∼30 s). Repro-
ducibility has been checked by three independent measurement sets.

The surface potential difference has been determined with a Trek Model
341A electrostatic voltmeter based on the Kelvin probe technique. (Further
information about the Kelvin probe technique and the setup is given in
SI Text.) The surface potential along and across the elastomer stripe was re-
corded on the two surfaces after each cycle. The potential distribution was
reproducible with a maximum in the middle of the lateral direction dropping
to approximately half the maximum value at the borders. In the vertical
dimension, the potential difference was found to be constant within experi-
mental error. The voltage depicted in Fig. 3 refers to the maximum potential
difference in the middle of the elastomer stripe.

The elastomer used for the experiments depicted in Fig. 4 and applications
shown in Figs. 5 and 6 was the same as in corona-charging experiments.
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