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This paper shows that a highly deformable capacitor made of a soft dielectric and two conformal

electrodes can switch between two states discontinuously, by a first-order transition, as the total

charge varies gradually. When the total charge is small, it spreads evenly over the area of the

capacitor, and the capacitor deforms homogeneously. When the total charge is large, it localizes in

a small region of the capacitor, and this region thins down preferentially. The capacitor will

survive the localization without electrical breakdown if the area of the electrode is small. Such a

bistable system may lead to useful devices. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4862325]

A fundamental challenge in the emerging field of soft

machines is to develop actuators that mimic neuromuscular

systems, inducing rapid, powerful, quiet movements in

response to electrical stimulation.1–5 A promising technology

relies on highly deformable capacitors made of dielectric

elastomers.6–8 Demonstrated uses are wide ranging; in soft

robots,9 MEMS,10–13 tunable lenses,14,15 haptic interfaces,16

and transparent loudspeakers.17 Also under development are

generators that harvest energy from animal movements,

structural vibrations, and ocean waves.18–21

The highly deformable capacitors exhibit rich nonlinear

behavior, which depends on the method of electrical stimula-

tion. In voltage-controlled actuation, the electric field across

the thickness increases as the thickness of the dielectric

reduces. This positive feedback may cause pull-in instability

and limit actuation strain.22,23 By contrast, giant actuation

strain is achieved by corona charging.24 In this method of

actuation, no electrodes cover the dielectric, so that charges

on the surfaces of the dielectric are immobile. Such charge-

controlled actuation is stable and does not suffer pull-in

instability.24,25 Corona charging nicely demonstrates a prin-

ciple, but is of limited use as a method of actuation, because

it is slow and energy-inefficient, and cannot be made

compact.

Here, we consider a more practical type of charge-

controlled actuation, where the dielectric elastomer is sand-

wiched between two conformal electrodes, such as carbon

grease. We show that the capacitor can switch between two

states when the total charge on the capacitor is varied gradu-

ally. The charge spreads uniformly over the area of the

capacitor when the total charge is small but localizes in a

small region of the capacitor when the total charge is large.

The switch from the homogeneous state to the localized state

is discontinuous, corresponding to a first-order transition.

The charge-localized capacitor will suffer electrical break-

down if the area of the electrodes is large, but will stabilize

if the area of the electrodes is small.

We begin with homogeneous charge-controlled actua-

tion, in which the charge is immobilized on the surfaces of

the dielectric, e.g., deposited by corona charging (Fig. 1(a)).

The theory of dielectric elastomers has been reviewed

recently.26 In the reference state, the capacitor is uncharged

and undeformed, and has area A and thickness H. In the actu-

ated state, the capacitor has voltage U, charge Q, area a, and

thickness h. The deformation is equal-biaxial in the plane of

the capacitor, with the stretch k ¼
ffiffiffiffiffiffiffiffi
a=A

p
. For such a thin-

membrane capacitor, the electric field is E ¼ U=h, and the

electric displacement is D ¼ Q=a. The charged capacitor by

itself is a closed thermodynamic system. We adopt the model

of ideal dielectric elastomer and assume the Helmholtz free

energy density of the form27

W ¼ l
2

2k2 þ k�4 � 3ð Þ þ D2

2e
; (1)

where l is the shear modulus and e the (absolute) permittiv-

ity, both of which are material constants. The free energy

is a sum of two parts: Elastic energy described by the

neo-Hookean model and electrostatic energy described by

the linear dielectric model, D ¼ eE. Furthermore, the model

assumes incompressibility of the elastomer, HA ¼ ha, so that

h ¼ Hk�2. The free energy of the charge-controlled capaci-

tor is FQ ¼ HAW, namely

FQ ¼
lHA

2
2k2 þ k�4 � 3ð Þ þ Q2H

2eA
k�4: (2)

At a fixed charge, the free energy as a function of the stretch,

FQ kð Þ, has a minimum (Fig. 1(a)). Setting dFQ=dk ¼ 0 with

Q held constant, we find the equation of state

Q2 ¼ leA2 k6 � 1ð Þ: (3)
a)Authors to whom correspondence should be addressed. Electronic
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This charge-stretch relation is monotonic. For a fixed charge,

Eq. (3) determines a unique value of stretch corresponding to a

stable state of equilibrium. This analysis reproduces an existing

result: Homogenous, charge-controlled actuation is stable.25

In voltage-controlled actuation, the actuator connects to

a charge reservoir at constant voltage (Fig. 1(b)). The free

energy of the capacitor is HAW, and the potential energy of

the charge reservoir reduces by UQ. Consequently, the free

energy of the composite system (the capacitor and the charge

reservoir) is FU ¼ HAW � UQ. Recalling that U ¼ Eh,

h ¼ Hk�2, Q ¼ Da, a ¼ k2A, and D ¼ eE, we find that

Q ¼ ek4AU=H, where the capacitance ek4A=H increases

with the stretch. The free energy of the composite system is

FU ¼
lHA

2
2k2 þ k�4 � 3ð Þ � eAU2

2H
k4: (4)

At a fixed voltage, the free energy as a function of the

stretch, FU kð Þ, has a minimum and a maximum (Fig. 1(b)).

Setting dFU=dk ¼ 0 with U held constant, we find the equa-

tion of state

eU2 ¼ lH2 k�2 � k�8ð Þ: (5)

This voltage-stretch relation is not monotonic and has a maxi-

mum. For a fixed voltage below this maximum, (5) deter-

mines two values of stretch, the smaller one corresponding to

a stable and the larger one to an unstable state of equilibrium.

This analysis reproduces another existing result: Voltage-

controlled actuation can undergo pull-in instability.22

Pull-in instability in voltage-controlled actuation has

been studied for different geometries, such as flat membranes,

spherical balloons, tubular balloons,23,28–30 and under differ-

ent loading conditions, such as equal-biaxial loading, uniaxial

loading, and pure-shear conditions.31–33 Pull-in instability of-

ten leads to electrical breakdown and should be eliminated in

the design of actuators.23 On the other hand, one can design

actuators to operate near the verge of instability, leading to

safe, giant actuation.34 Voltage-actuated areal expansions over

1000% have been demonstrated.29

Recalling that U ¼ Eh, h ¼ Hk�2, Q ¼ Da, a ¼ k2A,

and D ¼ eE, one can confirm that the two equations of state,

(3) and (5), are identical. We plot the equation of state on the

charge-voltage plane using both (3) and (5) by regarding the

stretch as a parameter. The charge-voltage curve is not mon-

otonic (Fig. 1(c)). For charge-controlled actuation, charge is

gradually added to the homogeneous system (e.g., by corona

charging), a single stable state changes continuously, and no

instability occurs. The maximum actuation stretch is limited

by electrical breakdown field. For voltage-controlled actua-

tion, as the voltage U ramps up and reaches its maximum

value, two branches of solutions merge. No state of

equilibrium exists for higher voltages, resulting in electrome-

chanical instability. Setting dU=dk ¼ 0 in (5), we obtain

the critical stretch kc ¼ 21=3, the critical voltage

Uc ¼ 2�4=3H
ffiffiffiffiffiffiffiffiffiffi
3l=e

p
, the critical charge Qc ¼ A

ffiffiffiffiffiffiffi
3el
p

, and

the critical electric field Ec ¼ 2�2=3
ffiffiffiffiffiffiffiffiffiffi
3l=e

p
.22 A membrane

of neo-Hookean material will become thinner and thinner,

leading to electrical breakdown. Consequently, voltage-

controlled actuation is limited by the critical state.

Incidentally, for more realistic models with strain-stiffening,

a second stable high-stretch state appears which often lies

beyond the condition of electrical breakdown.23

We next turn to localization in charge-controlled actua-

tion (Fig. 2(a)). We seek the condition of instability. The

entire membrane is electrically connected. Once a small

region of the membrane loses stability and becomes thinner

than the rest of the membrane, charge will flow to the small

region, and the positive feedback will lead to localization.

The rest of the membrane will not thin down. Because the

small region is constrained by the rest of the membrane, after

FIG. 1. Homogeneous deformation. (a) Free energy for charge-controlled

actuation. (b) Free energy for voltage-controlled actuation. (c) States of

equilibrium plotted on the charge-voltage plane.
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charge localization, the small region will have larger stretch

in area than the surrounding membrane. Consequently, the

small region may form wrinkles. In this paper, we do not

analyze the critical condition for the onset of wrinkles, but

simply assume that the in-plane stress is zero everywhere in

the membrane. For a dielectric sandwiched between two

electrodes, even when the total charge on the capacitor is

fixed, charge can flow in the electrodes and localize in a

small region of the capacitor. In a simplified model, we rep-

resent the capacitor by two regions, which are electrically

connected and have the same voltage U (Fig. 2(b)). In the

reference state, the capacitor is uncharged and undeformed,

the two regions have the same thickness H, the small region

has area AS, the large region has area AL, and the capacitor

has the total area A ¼ AS þ AL. In the actuated state, each

region can undergo its own homogeneous deformation. They

have areas aS and aL, and the in-plane equal-biaxial stretches

are kS ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
aS=AS

p
and kL ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
aL=AL

p
, respectively. This

model neglects the effect of the boundary between the

two regions. The charges on the two capacitors are QL

¼ aLDL ¼ ek4
LALU=H and QS ¼ aSDS ¼ ek4

SASU=H. Once

the capacitor receives electric charge, the power source is

disconnected, so that the total charge Q on the two regions is

fixed and is the sum of the charges on the two regions,

Q ¼ QL þ QS, namely

Q ¼ e k4
LAL þ k4

SAS

� �
U=H: (6)

The two regions are two capacitors in parallel, and the coeffi-

cient of the charge-voltage relation (6) is their combined ca-

pacitance, C ¼ e k4
LAL þ k4

SAS

� �
=H. The free energies per

unit volume of the two regions, WL and WS, are calculated

from (1) using quantities of the two regions. The free energy

of this composite system is a sum of the free energies of both

regions, F ¼ HALWL þ HASWS, namely

F ¼ lHAL

2
2k2

L þ k�4
L � 3

� �
þ lHAS

2
2k2

S þ k�4
S � 3

� �

þ HQ2

2e k4
LAL þ k4

SAS

� � : (7)

The first two terms are due to elasticity of the two regions,

while the last term is the total electrostatic energy. The free

energy of the two-region system is a function of the two

stretches kS; kLð Þ, and the behavior of this function depends

on the value of the total charge Q. At a small total charge,

the free energy function has only one minimum, correspond-

ing to a homogeneous, stable state of equilibrium (Fig. 3(a)).

At an intermediate total charge, two additional extrema (one

minimum and one saddle point) appear, corresponding to

two inhomogeneous states of equilibrium (Fig. 3(b)). At a

large total charge, the homogeneous state becomes a saddle

point, and the system will stabilize at an inhomogeneous

state (Fig. 3(c)).

FIG. 2. Localized deformation.

(a) When the membrane with compli-

ant electrodes is charged beyond a crit-

ical value, the homogeneous

deformation is unstable, and a small

region of the membrane deforms more

than the rest of the membrane. (b) A

model of localization represents the

membrane by two regions subject to

the same voltage, but each region

undergoes a separate homogeneous

deformation.

FIG. 3. First-order transition in a

charge-controlled capacitor. The rela-

tive size of the small region is

AS=A ¼ 0:1. The contours of the free

energy function F kL; kSð Þ for three

values of the total charge: (a)

Q= A
ffiffiffiffiffi
el
p� �

¼ 1, (b) Q= A
ffiffiffiffiffi
el
p� �

¼ 1:3,

and (c) Q= A
ffiffiffiffiffi
el
p� �

¼ 2:5. Bifurcation

diagrams show branches of states of

equilibrium. The horizontal axis is the

control parameter, the total charge on

the capacitor. The vertical axis is

(d) the voltage, (e) the stretch of the

small region kS, and (f) the stretch of

the large region kL. The black curve

represents the homogeneous deforma-

tion, while the blue and red curves rep-

resent two branches of inhomogeneous

deformation. The vertical purple arrow

marks the snapping transition from the

homogeneous state to the localized

state.
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Setting @F kL; kSð Þ=@kL ¼ @F kL; kSð Þ=@kS ¼ 0 in (7)

with the total charge Q held constant, we obtain two equa-

tions of state

eU2 ¼ lH2 k�2
L � k�8

L

� �
; (8)

eU2 ¼ lH2 k�2
S � k�8

S

� �
: (9)

At a given total charge Q, (6), (8), and (9) form a set of non-

linear equations for three unknowns: kL; kS, and U. Each solu-

tion corresponds to a state of equilibrium of the two-region

system. Because the equations are nonlinear, a capacitor sub-

ject to a given total charge Q may have multiple states of equi-

librium. We regard the total charge as the control parameter

and plot these states of equilibrium in bifurcation diagrams:

On the charge-voltage plane (Fig. 3(d)), the charge-kS plane

(Fig. 3(e)), and the charge-kL plane (Fig. 3(f)). As the voltage

is the same for both regions, (8) and (9) always have a trivial

solution kS ¼ kL, corresponding to a homogeneous state

(black curves in Figs. 3(d)–3(f)). Two branches of inhomoge-

neous solutions exist, corresponding to kS < kL (red curves)

and kS > kL (blue curves). To show the branches clearly, we

use different scales for the ordinates in Figs. 3(e) and 3(f).

The multiplicity of solutions can be understood graphi-

cally. The voltage U is common for the two parallel capacitors,

and the total charge is the sum Q ¼ QL þ QS. The

charge-voltage relations for the two capacitors have the form

QL ¼ ALf U=HLð Þ and QS ¼ ASf U=HSð Þ, where the universal

function f is the same as that for the homogeneous system

(Fig. 1(c)). For a given voltage below the maximum, each of

the functions QL Uð Þ and QS Uð Þ gives two values of

charge. The curves in Fig. 3(d) can be obtained by adding

the charge-voltage curves of the two capacitors,

Q Uð Þ ¼ QL Uð Þ þ QS Uð Þ. Thus, the resulting function Q Uð Þ
has four values of charge for each value of voltage.

Furthermore, for the two capacitors of the same initial thick-

ness, HL ¼ HS ¼ H, the maximum voltage for the two capaci-

tors is the same as that for the homogeneous system, Uc. The

total charge at this voltage is the sum QL þ QS

¼ AL þ ASð Þf Uc=Hð Þ ¼ Af Uc=Hð Þ, which is the same as the

critical charge of the homogeneous system, Qc. Thus, all four

branches of solutions merge at the single-capacitor critical

values Qc;Ucð Þ.
Imagine that we ramp up the total charge on the capaci-

tor gradually. When the total charge is below the critical

value, Q < Qc, the two regions deform by the same stretch,

along the curve of homogeneous deformation. When the total

charge exceeds the critical value, Q > Qc, the homogeneous

deformation becomes unstable, and both branches of inho-

mogeneous states are stable. Consequently, the capacitor

must switch from the homogeneous state to one of the inho-

mogeneous states. At the fixed charge Q ¼ Qc, the vertical

purple lines represent the capacitor that snaps from the ho-

mogeneous state to a state with localized charge (blue

curves). This localized state has a lower voltage (Fig. 3(d)),

an expanded small region (Fig. 3(e)), and a contracted large

region (Fig. 3(f)). The switch from the homogeneous state to

the localized state is a first-order transition and greatly

reduces the free energy of the capacitor. At Q ¼ Qc, the

capacitor can also make another transition, without disconti-

nuity in voltage or stretches of the two regions (red curves),

of lower voltage, contracted small region and expanded large

region. This continuous transition reduces free energy only

by a small amount and is therefore less favorable. We next

focus on the snapping transition.

In the course of the snapping transition, charges flow

from the large region to the small region, and this localiza-

tion amplifies the electrical field in the small region, which

may lead to electrical breakdown. We plot another bifurca-

tion diagram in the plane of the fixed Q and the electric field

in the small region ES, where we only include the stable

region of the homogeneous branch (black) and the blue

branch of the inhomogeneous state (Fig. 4(a)). Each blue

curve corresponds to a given value of AS=A, the vertical pur-

ple line corresponds to the snap, and the intersection between

the blue curve and the purple line determines the electric

field in the small region after the snap. The snap amplifies

the electric field more if the relative size of the small region

AS=A is smaller.

Assume that the breakdown electric field EEB is large

enough, so that the dielectric does not suffer electrical break-

down in the homogeneous state, EEB > Ec, namely,

EEB > 2�2=3
ffiffiffiffiffiffiffiffiffiffi
3l=e

p
. After the capacitor snaps into the inho-

mogeneous state, the electric field in the small region ampli-

fies to ES. This snap will cause electrical breakdown if

ES > EEB. The electric field ES is a decreasing function of

AS=A. Consequently, whether the electromechanical local-

ization will cause electrical breakdown depends on a combi-

nation of material properties, EEB

ffiffiffiffiffiffiffi
e=l

p
, and the relative size

of the snapping region, AS=A. The two parameters form a

FIG. 4. Electromechancial localization

and electrical breakdown. (a)

Bifurcation diagram plotted on the

plane of the total charge Q and the

electric field in the small part ES. (b)

The condition under which electrome-

chanical localization does not cause

electrical breakdown.
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plane, in which the condition ES ¼ EEB is a curve (Fig. 4(b)).

Above this curve, the localization will not cause electrical

breakdown. Below this curve, the localization will cause

electrical breakdown.

We derive the asymptotic behavior of the localized state

in the limit of small AS=A. In this limit, the small region

deforms greatly, kS � 1, while the large region is nearly

undeformed, kL ! 1. Consequently, (8) and (9) give that

kL � 1þ k�2
S =6 and U � H

ffiffiffiffiffiffiffi
l=e

p
k�1

S . Substituting these two

expressions into (6), replacing Q by Qc ¼
ffiffiffiffiffiffiffi
3el
p

A, and retain-

ing the leading term, we obtain that kS � 31=6 AS=Að Þ�1=3
.

The electric field in the small region is ES ¼ k2
SU=H

� 31=6
ffiffiffiffiffiffiffi
l=e

p
AS=Að Þ�1=3

. This power law closely approxi-

mates the numerical solution for small AS=A (Fig. 4(b)).

In this limit, the charge remaining in the large region is a

small fraction of the total change on the capacitor,

QL=Q � 3�2=3 AS=Að Þ1=3
.

We are unaware of any direct experimental observation

of charge localization. However, the instability of a homoge-

neous dielectric membrane has been predicted using a

similar theoretical procedure, and has been verified by

experiments.31,34 The electromechanical localization is remi-

niscent of a well-known mechanical instability. When a me-

tallic wire is pulled beyond a certain strain, homogenous

deformation becomes unstable, and the wire forms a neck.

This necking instability will set in even when the wire is in

displacement-controlled tension.35 The neck will lead to

fracture if the wire is long, but will stabilize if the wire is

short. In the necking instability of long metal wires, the

length of the neck is comparable to the diameter of the wire.

Similarly, we expect that the electromechanical localization

will occur over an area about AS � H2.

For a commonly used dielectric elastomer VHBTM, the

representative value is EEB

ffiffiffiffiffiffiffi
e=l

p
¼ 4:73.31,36 The localized

state does not undergo electrical breakdown if AS=A > 0:016.

This condition translates to the area of the electrode below

about A � 61H2, or the diameter of the electrode below about

D� 8H. For an initially 0.5 mm thick membrane, for example,

the corresponding “breakdown-safe” linear size will be in the

mm range. If the breakdown does not occur, the capacitor can

be switched between the homogeneous and the localized state

repeatedly. Upon this switch, the voltage drops significantly,

and the small region deforms greatly. These characteristics

can enable devices with bistable states, such as Braille dis-

plays.8 Furthermore, the bistable states can be tuned and

modified in many ways, such as by using a stiffening elasto-

mer with a relatively small limiting stretch, applying a pre-

stretch, introducing imperfections, and laminating the

deformable capacitor (or part of it) with a passive soft layer.

In summary, when the electric charge is immobile on

the surfaces of the dielectric, charge-controlled actuation is

stable and does not suffer pull-in instability. In the presence

of electrodes, however, charges will be mobile, and charge-

controlled actuation is bistable. At a critical charge, the ho-

mogeneous deformation becomes unstable, and the capacitor

will snap into a state of localized deformation by a first-order

transition, which may lead to electrical breakdown.

However, the breakdown in the charge-localization region

can be avoided if the initial area of the electrodes is small.

This bistability is tunable and can be used to design devices.
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