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ABSTRACT: Spasers and nanolasers produce a significant
amount of heat, which impedes their realizability. We
numerically investigate the farfield emission and thermal
load in optically pumped spasers with a coupled electro-
magnetic/thermal model, including additional temperature
discontinuities due to interfacial Kapitza resistance. This
approach allows to explore multiple combinations of
constitutive materials suitable for robust manufacturable
spasers. Three main channels of heat generation are
quantified: metal absorption at pumping and spasing wave-
lengths and nonradiative relaxations in the gain material. Out-
radiated power becomes comparable with absorption for
spasers of realistic dimensions. Two optimized spaser
configurations emitting light near 520 nm are compared in detail: a prolate metal-core/gain-shell and an oblate gain-core/
metal-shell. The metal-shell design, which with the increasing size transforms into a metal-clad nanolaser, achieves an internal
light-extraction efficiency of 22.4%, and stably operates up to several hundred picoseconds, an order of magnitude longer than
the metal-core spaser.

KEYWORDS: plasmonics, spasing, gain saturation, nanoparticle heating, power balance, light extraction efficiency, Kapitza resistance,
core−shell spheroids

One of the principal problems of the realization of a spaser
(surface plasmon amplifier using stimulated emission)

and metal-clad nanolaser is that there will be strong fields in an
absorbing metal component and its vicinity.1 As metals are
very good at converting electromagnetic energy into heat, this
increases the temperature of the system. In general, the heating
of plasmonic nanostructures is interesting in two different
aspects: either the heating is a desired effect, for example, for
electrothermoplasmonic nanotweezers in microfluidic chan-
nels2 or medical applications of nanoparticles in living tissues,3

or it threatens the realizability of a device. In lowest order
approximation, the surface plasmon oscillations in a spaser
decay primarily through ohmic loss. The spasing modes also
loose energy through far-field radiation (e.g., when used as a
nanoscopic light source). In the quasi-static case, this is a
weaker effect, but for the spasers of realistic dimensions,
especially for “bright” dipolar modes, this channel may become
comparable with absorption and important; it is included in
our study. In a realistic setting, a temperature change of several
hundred degrees in a fraction of a nanosecond is possible. The
thermal behavior of spasers and surface plasmons has been
discussed by several groups. For example, Smalley et al.4

derived a framework for the temperature dependence of the

spontaneous emission in semiconductor nanolasers (primarily
photonic, but also plasmonic), and estimative approximations
regarding the heating of spasers have been carried out by
Fedorov et al.5 However, a comprehensive analysis of the
thermal behavior of an operating spaser, as presented in the
following study, was missing so far. We aim to provide practical
guidelines for experimenters primarily on two subjects, suggest
realistic geometries for individual spasers and give estimates for
pumping intensities and durations, as well as expected out-
radiation and temperatures. This is the first study combining
the effects of spatially dependent gain saturation, retardation
and radiative losses (i.e., light extraction), heat generation in
both metal and gain material, Kapitza resistance, temperature
dependences of material properties, and influence of these
factors on the temporal evolution of spasing.

■ ELECTRODYNAMIC DESCRIPTION OF A SPASER

Gain Dielectric Function. We use the gain dielectric
function derived in ref 6
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which is based on a simplified 4-level scheme for the
chromophores (see Figure 1) and accounts for gain saturation

(SI units are used in this work). The underlying assumptions
are fast dephasing of the chromophore polarizations γL ≫ γij
and fast relaxation from levels 3 and 1 (γ32,γ10) ≫ (Ws,Wp,γ21).
Here, ωs is the frequency of surface plasmon oscillations (the
spasing frequency internally established in the system) and εh
is the dielectric function of the gain host material. The
emission of the chromophores is described by a Lorentzian
with strength εL and width γL , centered at a fixed, central free-
space wavelength corresponding to the 2 → 1 molecular
transition, λ21 = 2πc/ω21, with c being the vacuum speed of
light. The dimensionless amplitude of the emission Lorentzian
at midline, εL , is called (unsaturated) gain level. It is directly
related to the pumping rate Wp[s

−1] (adapted from eqs 18 and
22 in ref 6),
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where Ntot is the density of the chromophores and σ21 is their
(orientation-averaged) emission cross section in the bulk host
medium. The pumping rate Wp depends on the (local)
pumping field Ep and the chromophore bulk absorption cross
section (we assume σ30 = σ21),
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where the pumping frequency ωp corresponds to a free-space
wavelength of λp. We assume that the spaser is tuned close to
the 2 → 1 transition of the chromophores, meaning that ωs −
ω21 ≪ γL. The spasing rateWs can be analogously expressed by
replacing ωp → ωs, Ep → Es and σ30 → σ21, where Es is the
local, surface plasmon (spasing) field. Saturation field Esat in eq
1 can be expressed as follows from eq 21 in ref 6
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(4)

It can be understood as the strength of the spasing field at
which gain saturation effects become significant. For example,
at |Es| ≈ Esat (which corresponds to Ws ≈ Wp + γ21), the gain
dielectric function (at midline) is halved with respect to the
nonsaturated expression. Finally, γ21 is the Purcell-enhanced

spontaneous decay into the resonant mode for the 2 → 1
transition. From quantum-mechanical treatment,7,8 we esti-
mate (see Supporting Information, end of the section Purcell-
Enhanced Spontaneous Emission, and Table 2 for values)
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21

G h
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σ
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where VG is the effective mode volume in the gain material.
In calculations we used the following parameters, which are

typical for organic fluorophores: λ21 = 520 nm, γL = 3.8 × 1014

s−1, Ntot = 8 × 1025 m−3, σ21 = 2.5 × 10−20 m2, and λp = 470
nm, and the gain host is chosen to be silica with εh = 2.14.9

In detailed analysis of the spaser,10 (end of section 2.1 there)
a chromophores concentration of Ntot = 2.4 × 1026 m−3 was
assumed. Experiments11 implied Ntot = 4.7 × 1026 m−3 within a
5 nm thick doped silica shell. In the current study, we use
concentrations, that are a factor of 3−5 less and are easier to
achieve experimentally.
While mean-field chromophore interaction is included via a

field- and position-dependent dielectric function with gain
saturation (1), we do not discuss more complex cooperative
effects,12,13 assuming that they are smeared out by strong
dephasing and random dipole orientations. Indeed, in the
recent paper,14 Petrosyan and Shahbazyan concluded that with
tens of thousands randomly oriented molecules, the ensemble-
averaged dipole−dipole coupling vanishes, and the resonant
mode is also unaffected by it.

Spasing Threshold. The spasing threshold corresponds to
the minimum pumping strength required to start and maintain
the generation. For simulations, it is more convenient to
express the spasing threshold in terms of the gain level εL and
not the pumping rate Wp. To find the threshold numerically,
we vary the spasing frequency ωs and the gain level εL to find
the set of parameters (ωthr,εL,thr), for which the electric field
diverges in an unsaturated, linear system (i.e., with (|Es|/Esat)

2

→ 0 in eq 1, see Arnold et al.15). ωthr is called the threshold
generation frequency of the spaser, while εL,thr will be referred
to as the gain threshold. After the pair (ωthr,εL,thr) is found, all
simulations are carried out with gain saturation included.

Heat Sources in Spasers. In an operating spaser, the heat
released in the metal can be described by the volumetric power
of Ohmic losses, Q , using the imaginary part of the metal
dielectric function εM″ (ω),

Q r E r( , )
1
2

( ) ( , )0 M
2ω ωε ε ω ω= ″ | |

(6)

where E(ω, r) is the amplitude of the electric field at the
location r inside the metal, either at the spasing or the
pumping frequency.
The gain material is heated by nonradiative decay of the

chromophores. The corresponding heat source can be
described by (see Supporting Information, section Heat Source
in the Gain Material)
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■ MULTISCALE AND MULTIPHYSICS NUMERICAL
MODELING

Coupling of the Thermal and Electromagnetic
Problems. The coupling between the electromagnetic and
the thermal problem is achieved via a temperature-dependent

Figure 1. Simplified 4-level scheme used to model the chromophores.
The pumping transition is from levels 0 → 3, and the spasing
transition is from levels 2 → 1. We assume fast relaxation from levels
3 and 1, (γ32,γ10) ≫ (Ws,Wp, γ21).
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metal dielectric function (see Supporting Information, section
Temperature-Dependent Drude Model, and Reddy et al.16). To
simulate the surface plasmon oscillations in a spaser, we use
COMSOL Multiphysics, which is a versatile commercial
software package based on the finite element method
(FEM). We combine nonlinear Maxwell’s equations (solved
in the frequency domain) with the heat equation (solved in the
time domain) using a so-called frequency-transient study step
sequence: first, we solve the electromagnetic problem with gain
saturation in frequency domain and use its results (i.e., the heat
sources) to make a time step in the thermal problem. Then, we
recompute all related quantities (e.g., the temperature-
dependent dielectric function) and solve the electromagnetic
problem again, using the previous solution as an initial guess.
The underlying assumption for the validity of this multiscale
and multiphysics computational workflow is that the electro-
magnetic problem approaches equilibrium much faster than
the thermal one. In particular, quantum coherence effects17−20

are omitted in our analysis. Polarization adiabatically tracks the
populations for times longer than the dephasing time γL

−1

(inverse atomic line width). Note that recent experiments,21,22

which reveal pronounced coherence effects in plasmonic
systems, essentially deal with single emitters, which makes
influence of dephasing much less crucial, as opposed to more
than 1000 emitters discussed here. Transients in plasmon and
population dynamics end on the time scale of Purcell-
enhanced atomic relaxation time γ21

−1 that is, within dozens of
picoseconds at most (Table 2), as vibronic relaxations γ32,γ10
and plasmon decay are even faster. Detailed quantum analysis
of spaser in ref 23 shows eqs 33−37 and Figures 4 and 5 in
Supporting Information there, and the discussion in eq S8 on
pp S4 and S5 of Supporting Information, that generation
stabilizes below 1 ps (see also Figure 4a,b in ref 10). We study
much longer time scales of 10 ps to 1 ns, under constant
pumping intensity. Transient ps processes do exist, but the
heating during this time is negligible (see Figure 3). Thermal
dynamics occurs over larger time scales, where quasi-stationary
electrodynamics adiabatically follows slow changes in param-
eters. Such slowly varying envelope approach fails, if the
duration of the transient processes (ps) becomes comparable
with polarization dephasing time (fs). Fortunately, this is
almost never the case.
The electrodynamic simulations of the pumping field are

carried out at pumping frequency ωp, and they must be
decoupled from the spasing simulations (which are performed
at spasing frequency ωs). Equation 1 describes the emission
properties of chromophores near the spasing frequency, but
there is also a Lorentzian with opposite sign around ω30 = ωp
(i.e., the 3 → 0 transition of the dyes), which corresponds to
the absorption cross section. Then, the gain dielectric function
for the pumping simulation is6

i
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where Ep,sat is the local pumping saturation field,
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The heat released in the gain material is already addressed
by eq 7 (which is implemented in the spasing simulation);
thus, we only have to consider the heat released in the metal.

For computational efficiency, the problem can then be further
decoupled: the temperature only needs picoseconds to spread
over the metal due to its high thermal diffusivity, but the
thermal problem needs several nanoseconds to reach the
stationary solution. The high thermal conductivity of the metal
further means that the temperature gradient is very small there.
Thus, we can assume a homogeneous metal temperature and
run many purely electrodynamic pumping simulations for
various metal dielectric functions εM(T), where T varies within
300−1200 K. From these results, we can then build a
temperature-dependent pumping heat source Qp(T) (see eq
6). For example, the metal dielectric function at temperature T
is εM(T), and the average power of the pumping heat source
per unit volume is

Q T
V

V T E( )
2

d ( )p
0

M M
M p

2∫ωε
ε= ″ | |

(10)

where VM is the metal volume and Ep is the local pumping field
induced by an incident (plane wave) intensity Iin (which is the
same in all simulations). If done thoroughly for an array of
temperatures (steps on the order of 1 K), this method
improves convergence and is in good agreement with the
results from a continuously coupled electromagnetic/thermal
numerical model.

Kapitza Resistance. In the thermal simulations, we
employ the Kapitza resistance24,25 in a form of interfacial
thermal boundary condition. Due to the Kapitza resistance,
which is essential for nanostructures, the temperature is
discontinuous at the interface between two materials. The step
in temperature is proportional to the heat flux J across the
boundary S,

J G T T( )S 1 2= − (11)

where T1 and T2 are the corresponding surface temperatures
on either side of the interface. G is called interfacial thermal
conductance and depends on the materials and type of
interface (e.g., metal/water, metal/metal, ...). The stationary
temperature distribution around a continuously heated,
spherical nanoparticle provides an estimation of the
importance, and good motivation for the inclusion of the
Kapitza resistance. The relative change in temperature at the
boundary in this case is (see Supporting Information, section
The Stationary Solution for a Continuously Heated, Spherical
Nanoparticle with Kapitza Resistance)

T T
T

k
Ga

1 2

2

a−
=

(12)

where a is the nanoparticle radius and ka is the thermal
conductivity of the ambient. Thus, the smaller the nano-
particle, the larger is the influence of the Kapitza resistance.

Geometry, Materials, and Pumping. To explore the
operational thermodynamics of example spaser designs, we
choose them from a family of coaxial oblate or prolate
spheroidal core−shell configurations with a variable core
aspect ratio κ > 1. The pumping field can be parallel or
perpendicular to the axis of revolution. The shell spheroid is
defined with a shell thickness h: for a core spheroid with a
major semiaxis a and a minor semiaxis a/κ, the major and
minor semiaxes of the shell will be a + h and a/κ + h,
respectively. Examples for a = h = 30 nm, κ = 6.25 and a = h =
23 nm, κ = 1.94 are shown in Figure 2, panels a, b and c, d,
respectively.
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To examine the thermal dynamics of the metal-core/gain-
shell and gain-core/metal-shell configuration, it is important to
clarify some basic specifications for both structures. We choose
silver for metal components (dielectric function by Johnson
and Christy35) and silica (εh = 2.149) as gain host material.
Both spasers are immersed in water (εa = 1.7836) to imitate
realistic experimental conditions. Both spasers have similar
dimensions, low gain thresholds (εL,thr < 0.15), and the same
generation frequency, which lies in the visible range. Table 1

shows the room temperature values for the thermal material
properties. With the exception of the Kapitza conductance, all
material properties are assumed to be temperature-dependent.
The values for the Kapitza conductance vary widely in the
literature,37−43 so we choose a temperature-independent
Kapitza conductance G = 108 W/(m2·K) for all interfaces,
which is close to 6 × 107 W/(m2·K) found in our recent
thermoreflectance experiments.44

From quasistatic results (see Supporting Information,
section Quasistatic Spasing Condition for Confocal Spheroidal
Core-Shell Structures), we find that three spaser configurations
have low gain thresholds (εL,thr < 0.15) and generation
frequencies in the visible range. For the final comparison, we
choose to simulate only two essentially different geometries
with respect to shape and order of materials: the oblate gain-
core/metal-shell structure with E∥z and the prolate metal-
core/gain-shell structure with E∥z, where z represents the axis
of revolution. For the excitation field used, both structures
show rotational symmetry, which is convenient for simulations.
The omitted third oblate spaser with the nonsymmetric

excitation along the large axis also has marginally higher
threshold than these two. The spasers are tuned to a
generation wavelength of 520 nm via variation of their core
aspect ratio. At 520 nm, the gain threshold has a local
minimum and the aspect ratios are realistic (i.e., the structures
are not unrealistically thin). We set the pumping frequency ωp
to 470 nm, which corresponds to a Stokes difference typical for
organic dyes in this spectral range. In ref 10 (middle of the
section 1.1 there), a spaser with a (spherical) gain core of
radius 12 nm and metal shell thickness below 1 nm are
discussed. In the case of manufacturing issues, a simple
suggestion to scale the device up by a factor of 2 or 3 could be
offered. Our studies reveal that such an easy fix will not work
for several reasons: retardation, out-radiation, and thermal
effects. To provide the guidelines for the experiments, we kept
the wavelength, metal and gain thicknesses and the
chromophore concentration as realistic as possible. This
unavoidably leads to larger sizes discussed here, which can
be also easier to manufacture. The resulting spaser geometries
are shown in Figure 2. Such numbers and geometries are
feasible for modern methods of dye-matrix manufacturing (for
instance, using stimulated emission depletion (STED)
lithography45). The values of the numeric spasing thresholds
are listed in Table 2 among other operational parameters.

The pumping strength of a spaser is a key parameter for its
operation. It can be expressed in terms of several quantities
(which are all related to each other): (i) the pumping rate Wp,
(ii) the gain level εL , or (iii) the incident pumping intensity Iin
of a focused pumping laser, which induces the field Ep in eq 3.
We are interested in the case of post-threshold pumping, thus
we simulate our spasers at the gain level εL = 1.7εL,thr. The
corresponding parameters (Wp, Iin, ...) can be found in Table 2.

Thermal Limits. There are several factors that determine
the thermal limitations of a spaser. Generally, a deformation of
the geometry should be avoided, which means that the
operating temperature should stay below the melting point of
the gain host and the metal, respectively. However, Inasawa et
al.46 show that laser-induced surface reshaping of gold
nanoparticles occurs approximately 120 degrees below the
melting point. The melting point of silver is at 1235 K,31 which
yields an estimated reshaping temperature of around 1115 K.
To be on the safe side, we set the maximally allowed metal
temperature to 1000 K.
Also critical is the thermal decomposition of the

chromophores: if the dye molecules are thermally damaged,
the changes of the absorption and emission spectra are

Figure 2. Geometries of the investigated spasers. Both spasers are
numerically tuned to a resonant wavelength of 520 nm via variation of
their core aspect ratios. The polarization of the pumping field
(denoted E) is parallel to the axis of revolution. (a) and (b) The
oblate gain-core/metal-shell configuration has a core aspect ratio κ =
6.25. (c, d) Prolate metal-core/gain-shell configuration has a core
aspect ratio κ = 1.94. For both configurations the ambient material is
water.

Table 1. Room Temperature Values of Thermal Material
Properties (Thermal Conductivity k, Specific Heat Capacity
c, Density ρ) for Silver (Ag), Silica (SiO2), and Water (H2O)

Ag26−28 SiO2
29−31 H2O

32−34

k [W/(m·K)] 426.4 2.40 0.61
c [J/(kg·K)] 236.7 748 4181.5
ρ [kg/m3] 10470 2196 998

Table 2. Operational Parameters for the Gain-Core/Metal-
Shell (Gain/Metal) and the Metal-Core/Gain-Shell (Metal/
Gain) Spaser in Comparisona

gain/metal metal/gain

εL [1] 0.193 0.197
εL,thr [1] 0.113 0.116
λthr [nm] 519.96 519.78
Wp

† [1/s] 1.10 × 1012 1.02 × 1011

Ws
† [1/s] 1.08 × 1012 2.29 × 1010

γ21 [1/s] 2.83 × 1011 2.32 × 1010

Iin [W/cm2] 2.16 × 107 5.39 × 107

aQuantities marked with † depend on position and time: they are
averaged over the gain material and evaluated at t = 0 (which
corresponds to T = 300 K).
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irreversible and the principal functionality of the spaser is
threatened. The thermal decomposition temperatures of
certain dyes can be quite low, for example, rhodamine B
decomposes at around 520−570 K.47,48 To safely avoid
thermal damage of the chromophores, the temperature of
the gain material should not exceed 500 K, which makes this a
dominant limitation for the combination of materials used
here. Since silica has a melting point of 1986 K,31 this
condition also prevents melting effects in the gain host.

■ RESULTS
Figure 3 shows the results for the average and maximum
temperatures over time in the respective spaser components.

The oblate gain-core/metal-shell spaser can operate up to 650
ps under the specified pumping conditions before the gain host
reaches the critical temperature of 500 K. For the prolate
metal-core/gain-shell spaser, the metal component is the
limiting factor: after approximately 60 ps, the metal core
reaches a temperature of 1000 K and spaser operation needs to
be terminated to avoid melting or surface reshaping effects.
Thus, the maximum pulsed operation times are 650 and 60 ps,
respectively. For information regarding the cooling of the
structures on a nanosecond time scale, see Supporting
Information, section Cooling Time.

Figure 4 shows the distribution of the spasing field |Es| at the
end of the pumping pulse (650 or 60 ps) in both

configurations. The spasing mode is dipolar in both cases.
For the gain-core/metal-shell geometry, the field is approx-
imately an order of magnitude stronger in the core, which leads
to more effective chromophore utilization. The field in the
oblate gain core is quite homogeneous, and with the increasing
size, such a design transforms into a metal-clad nanolaser,4,49

operating on the first TM mode (dipolar Mie void plasmon in
the case of a spherical core−shell). Thus, our analysis bridges
the gap between spasers and nanolasers. The small dip in the
electric field within the shell of the gain-core/metal-shell oblate
spaser is most likely a needle effect: the large curvature along
the equator of the ”pancake” (left and right sides of the
structure in Figure 4a) leads to the disproportionately large
fields in this region. The dip is very shallow: the field falls
approximately 15%.
Figure 5 shows the temperature distribution at the end of

the pumping pulse (650 or 60 ps). Due to the high thermal
conductivity of silver, the metal temperature is spatially almost
constant in both configurations. In the metal-core/gain-shell
spaser, the gain-shell acts as a thermally insulating layer: after
60 ps, the heat wave has penetrated only the first 13 nm of the
approximately 23 nm thick gain-shell. In order to diffuse
through the shell and reach the ambient, the heat wave would
need approximately 175 ps, much longer than the maximally
allowed pulse length. For the gain-core geometry, metal is in
direct contact with water, which represents the ultimate heat
sink. Since most of the heat is generated inside the metal, the
operation temperature in this structure is much lower than in
its counterpart. Because of the Kapitza resistance, the
temperature jumps at the metal-gain interface: in Figure 5,
the discontinuity is 40 K for the gain-core/metal-shell and 540
K for the metal-core/gain-shell spaser. The average curvature

Figure 3. (a) Average and (b) maximum temperature rise T − T0 in
the respective spaser components (metal and gain). Solid curves are
for the oblate gain-core/metal-shell, dashed curves for the prolate
metal-core/gain-shell spaser. The maximum operation time is 650 and
60 ps, respectively (see section Thermal Limits for the thermal limits).
Due to the high thermal conductivity of silver, there is practically no
difference between average and maximum temperature in the metal.

Figure 4. Distribution of the spasing field |Es| at the end of the
pumping pulse in (a) the oblate gain-core/metal-shell and (b) the
prolate metal-core/gain-shell spaser. Wavevector k refers to the
pumping field, while E indicates the prevalent polarization of both
pumping and spasing fields.
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of the prolate spaser is larger and its temperature is higher,
hence, the temperature discontinuity is more pronounced.
We apply the thermal restrictions of section Thermal Limits

to the average rather than the maximum temperature. For the
metal component, the choice is irrelevant: the temperature
difference over the volume is of the order of 1 K, and the
average and maximum temperatures largely coincide (black
curves in Figure 3). In the gain material, however, intense
temperatures can occur at the gain/metal interface (especially
if the gain shell acts as an insulating layer). The affected area is
very small though (only the first few nm, see Figure 5b), so
slight melting effects or chromophore decomposition are
almost negligible. In fact, thermal destruction of chromophores
in close proximity to the metal might even be beneficial: Kewes
et al.23 argue that a nonactive layer of a few nanometers around
a metal core reduces quenching (i.e., the excitation of
undesired, higher-order surface plasmon modes). In real
systems, the heat generated by the Ohmic decay of higher-
order surface plasmons may be significant, thus, a nonactive
“spacing” layer can prove thermally advantageous.
The contributions of different heat souces to the total

heating power in the spasers are shown in Figure 6a. For the
gain-core/metal-shell spaser (solid curves), the heat induced
by the spasing (at 520 nm) and pumping (at 470 nm) fields is
comparable, while for the metal-core/gain-shell spaser (dashed
curves), the pumping field heat source is the dominating
contribution. In both cases, the heat generated by vibronic
relaxation of the chromophore excitation is negligible
compared to the total heating power. Though metal absorption
at pumping wavelength is the largest heat source, the results
show that pulsed operation of both devices is feasible.
The opposite temporal behavior of the spasing and pumping

heating powers in Figure 6a is due to an increase in
temperature with time. To understand both trends, we have
to look at the temperature dependence of the Ohmic loss, eq 6:
Q(T) ∝ εM″ (T)|E(T)|2. The imaginary part of the metal

dieletric function increases linearly with temperature, εM″ ∝ C1
+ C2T, while εM′ remains effectively constant (see Supporting
Information, section Temperature-Dependent Drude Model).
The pumping field, which is off-resonant, is largely dominated
by the absolute value of the dielectric function, which in turn
remains approximately constant since |εM′ | ≫ |εM″ | ⇒ |εM| ≈
|εM′ | ≈ const(T). Thus, the pumping field Ep depends only
weakly on temperature and the pumping heat source Qp
increases linearly with temperature, since

Q T T( ) ( )p Mε∝ ″ (13)

The temperature dependence of the spasing field in the
metal can be qualitatively understood using the quasistatic
estimation for the gain-core/metal-shell spaser at the threshold
generation frequency ωthr (see eq S32 in Supporting
Information, section Quasistatic Estimation for the Temperature
Dependence of the Spasing Field at the Threshold Generation
Frequency, and the discussion there),
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The saturation field Esat and the gain level εL are related to the
pumping field Ep, see eqs 2−4, and depend only weakly on

Figure 5. Temperature distribution at the end of the pumping pulse
in (a) the oblate gain-core/metal-shell and (b) the prolate metal-
core/gain-shell spaser. For the latter, the shell acts as a thermally
insulating layer. Note that the scale is logarithmic from T0 = 300 K to
T ≈ 950 K.

Figure 6. (a) Heating power (integrated heat sources) in the
respective spaser components and the out-radiated power (integrated
far-field Poynting vector of the spasing field) for both spasers: oblate
gain-core/metal-shell (solid curves) and prolate metal-core/gain-shell
(dashed curves). The maximum operation times are 60 and 650 ps.
The heat generated at the spasing/pumping frequency in the metal is
induced by the spasing/pumping field (Es, Ep), respectively. (b)
Internal light-extraction efficiency of both spasers, calculated as
described in the text.
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temperature. Thus, the spasing heat source Q s decreases
almost linearly with temperature,

Q T T( ) ( )s
L M

h
M

ε ε
ε

ε∝
| ′ |

− ″
(15)

Additionally, in Figure 6a, the farfield out-radiated power
(green curves) is shown. For both geometries, it is comparable
with the absorption of the spasing field by the metal (black
curves). This contrasts with the often used quasistatic
assumption, that the dominant losses of the generating spaser
are purely absorptive.10 Such an approximation indeed holds
for a spaser of few nm in size, but for a realistic geometry with
sizes around 100 nm studied here, the retardation effects and
radiative losses cannot be neglected. Here, the radiative losses
equal about 80% of the absorption losses, which is in
qualitative agreement with the numerical gain thresholds for
our spasers, which are about 60−70% higher than the
quasistatic predictions (see Supporting Information, section
Quasistatic Spasing Condition for Confocal Spheroidal Core−
Shell Structures). The relation between the absorption and out-
radiation holds both near and above threshold, when gain
saturation sets in, because both are proportional to the square
of the spasing field. In an idealized laser with negligible
absorptive losses, post-threshold pumping is fully converted
into useful output (not counting the Stokes shift). In a spaser,
the field in the metal represents an immanent part of the
resonant mode, and the out-radiation and Ohmic losses
maintain a constant ratio even above threshold.
Importantly, the results in Figure 6a allow for the estimation

of the farfield emission efficiency for both spasers. Within the
employed approximations, the overall incoming absorbed
power is converted into the losses in the metal at the pumping
and spasing wavelengths, the losses in the gain material, and
the out-radiated power, that is, equals the sum of all four
curves in Figure 6a (quenching and scattering at the pumping
wavelength are neglected here). Dividing the radiated power
(green curves) by this sum, we arrive at an internal farfield
light-extraction efficiency, which is shown in Figure 6b. At
early times, when the temperature is low, it reaches 22.4% and
8.1% for the oblate and prolate geometries, respectively. While
for the prolate geometry, the efficiency degrades to half of the
initial value already after only about 16 ps, for the oblate case
with the gain core, it remains almost constant, and is still equal
to 16.3% at the thermally defined time limit of of 650 ps. This
is not overly surprising, as with increasing size this structure
becomes similar to a metal-clad nanolaser.4,49

The decrease in the radiated power is concomitant with the
overall decrease of the spasing field with temperature, and
therefore time (see eq 14). For the dipolar modes used here
and the numbers considered, the oblate geometry with gain
core turns out to be a better farfield emitter of light than the
prolate one, both in absolute numbers and in terms of
extraction efficiency. This is related to the overall better
performance and larger spasing fields there (see Figure 4) and,
possibly, to the nature of the metal shell plasmon in this case
(low-energy, symmetric, bonding), where surface charges on
the outer and inner surfaces of the shell oscillate in phase.50

Larger out-radiated power (losses) is a desired outcome if a
spaser is used as a nanoscopic light source. For the applications
where it is employed as a local coherent field amplifier, for
instance, for surface-enhanced Raman scattering (SERS),
larger local fields are of higher relevance, despite associated

absorption in the metal. Here, prolate geometry, or higher
order modes with smaller radiative losses may be preferable.
We also simulated similar spasers with polystyrene as gain

host material, which was recently used as a matrix for organic
dyes in microresonators.51−53 The summary of these results
can be found in the Supporting Information, section
Polystyrene as Gain Host Material.

■ CONCLUSIONS
We have shown that pulsed operation of spasers with durations
longer than 10 ps is principally possible with regard to thermal
stability. In particular, the considered core−shell configura-
tions with resonances near 520 nm can be operated with pulse
lengths up to 60 ps (prolate metal-core/gain-shell) and 650 ps
(oblate gain-core/metal-shell) in an aqueous ambient. The
latter geometry, which with increasing size becomes similar to
a metal-clad nanolaser, provides better utilization of gain
material, and the metal/water interface proves to be very
efficient in transporting heat to the water ambient, which acts
as a heat sink. Further, the optically pumped oblate gain core/
metal shell spaser, operated as a nanoscopic coherently
radiating light source, reaches an internal light-extraction
efficiency of 22.4%, which stays almost constant up until the
thermal time limit of 650 ps.
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Purcell-enhanced spontaneous emission

The total spontaneous emission rate of the chromophores from levels 2 to 1 (γ21) includes

several channels. The electronic excitation in the dye system can either decay into a resonant

(in the present case dipolar) surface plasmon, or it can decay into higher order (non-resonant,

multipolar) surface plasmons. It can also decay radiatively (into far-field photons) or non-

radiatively (into phonons). Spontaneous emission contributes to noise in a spaser,S1,S2 which

we are not able to simulate within the current frequency-domain framework. Thus, we

assume that our systems are ”good” single-mode spasers, where the spontaneous emission

primarily yields dipolar surface plasmons.

The spontaneous emission rate is Purcell-enhanced,S3 since the nanoparticle acts as a res-

onator with a very small mode volume. Quantum-mechanics predicts that the stimulated

emission into a given single mode is always a factor ns stronger than the spontaneous emis-

sion into it (see Section 8.3 in Yariv,S4 Supplement 2 in Khurgin et al.S2 and Supplement

Section 2 in Kewes et al.S5), where ns is the number of resonant surface plasmons:

γ21 =
Ws

ns

. (S1)

ns can be expressed in terms of the total electromagnetic (spasing) energy in the system

(see §80 in Landau and LifshitzS6),

nsh̄ωs =
1

4

∫
dV

(
ε0
∂(ωε′)

∂ω
|Es|2 + µ0|Hs|2

)
. (S2)

To get an estimate for γ21 used in the rate equations results in the main text, it is convenient

to average the number of transitions per unit volume over the gain material,

γ̃21n2 =

∫
G

dV γ21N2 with n2 =

∫
G

dV N2, (S3)

S2



where N2 is the population density and n2 the total population of level 2. Inserting the

equation for the spasing rate Ws, similar to Eq. (3) in the main text,

Ws =
cε0
√
εhσ21

2h̄ωs

|Es|2, (S4)

yields (assuming spasing in the center of the line with ωs = ω21)

γ̃21 =
σ21c√
εh

(
1
2

∫
G
dV ε0εh|Es|2N2

nsh̄ωsn2

)
. (S5)

The ratio in parentheses quantifies the overlap between the density profiles of the electro-

magnetic energy w and the population inversion N2. The result has the dimension of inverse

volume:

2
4

∫
G
dV ε0εh|Es|2N2

nsh̄ωsn2

=
2
∫
G
dV wN2∫

all
dV w

∫
G
dV N2

≈ 2WGN2

WVGN2

=
2f

VG
. (S6)

The dimensionless factor f = WG/W is the fraction of electromagnetic energy stored in the

gain material (neglecting small magnetic contributions) vs. total electromagnetic energy in

the system, while VG is the modal volume in the gain material, modified by the distribution

of population inversion. We assume that half of the energy is located in the gain material,

2f = 1, approximate VG by the gain volume, (which, for our geometries, is related to the

volume of the nanoparticle), and use the averaged value γ21 = γ̃21 everywhere. This leads to

our final approximation for the spontaneous emission rate:

γ21 =
σ21c

VG
√
εh

= γ21,bulk
ω

γL

λ3

(2π)2n3
hVG

. (S7)

The last equality in Eq. (S7) was obtained expressing σ21 via the bulk (unmodified) radiative

decay rate in the host medium, γ21,bulk (refractive index nh =
√
εh), (see Eq. (20) in Arnold

et al.S7 and references therein). It contains the quality factor of the atomic line QL = ω/γL,

S3



rather than that of the resonator QR = ω/γR, which enters the conventional Purcell factor

(Eq. (13.3-47) in Saleh and TeichS8). The latter is derived for a narrow atomic line γL � γR,

while for organic dyes (or semiconductors) the situation is reversed, or the linewidths are

comparable. In such situations, the emission linewidth becomes the dominant factor, see

Eq. (37) in Khurgin,S9 or Eq. (40) in the Supplementary Materials to Khurgin and Sun,S2

which explicitly discusses this issue.

The first expression in Eq. (S7), (Eq. (5) in the Main Text) elucidates the corpuscular origin of

the Purcell enhancement as an increase in collision frequency between the emitter/absorber

and the photon, which ”moves” with the velocity c/
√
εh within the small modal volume.

More detailed expressions for the Purcell factor depend on position (Supplementary Materials

to Khurgin and SunS2), include orientational and spatial averaging (Figs. 2ab in Kewes et

al.S5) and even time dependence, due changes in the field distribution with temperature.

To incorporate all this into the model, going beyond the mesoscopic description, would be

an overshot in accuracy, diluting the main message of the work, which lies in the analysis

of retardation, light extraction and thermal effects, keeping the key parameters within the

physically admissible range.

Similarly, quantum coherence effects are smeared out by both strong dephasing of the chro-

mophores, and the fast decay of plasmons. This can be illustrated as follows. The quantum

dynamics of a spaser can be described by three equations: see (4)-(6) in ref.,S1 or (64)-(67)

in ref.,S10 or (34) in ref.S11 (the latter discusses also more elaborate models):

ρ̇ =− (i(ω − ω21) + Γ21)ρ+ ianΩ∗

ṅ =− γ21(1 + n) + g(1− n)− 4Im(aρΩ) (S8)

ȧ =(i(ω − ωM)− γM)a+ iaρ∗Ωntot.

Here, ρ and n are complex amplitudes of non-diagonal and diagonal elements of the density

matrix, which describe polarization and population inversion; a is the complex amplitude of
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(quasi-classical) plasmon number operator; ω, ω21 and ωM are the frequencies of operation,

atomic transition and plasmon, respectively. Γ21 = γL/2 is the decay of non-diagonal part of

density matrix, (i.e., dephasing rate of chromophores, decay of macroscopic polarization), γ21

is the depopulation rate of the upper level, including non-radiative and (Purcell-enhanced)

radiative contributions, and γM is the plasmon decay rate. g is the pumping rate parameter,

Ω is the (normalized) Rabi frequency of the spasing transition, and ntot the total number of

(identical) chromophores.

These equations contain quantum coherence effects. For example, if the spasing field a is

enforced externally (and pumping g is correspondingly removed), all frequencies are equal

and damping and dephasing are absent, the last terms in the first two equations in (S8) are

oscillatory, with the Rabi frequency 2|aΩ|.

All three rates in equations (S8): the dephasing Γ21, Purcell-enhanced relaxation γ21 and

plasmon decay γM, damp any oscillatory processes. These rates are in the range 3× 1011 to

2×1014 s−1. Thus, any quantum coherence oscillations will be suppressed at least within few

picoseconds, which is well below the timescales of interest for practical spaser operation.

For such long times, calculations based on quantum density matrix (optical Bloch) equations

for the spaser (section 2.1 in ref.S1), which do include (strongly damped) coherent effects,

result in the (quasi-static) threshold expression (Eq. (82) in similar ref.S10), which is iden-

tical to the one derived from the purely electrodynamic considerations (using appropriate

microscopic expression for ε′′gain), as noted in ref.S12 (end of section 3 there). Post-threshold

behavior in long pulses is also the same, as discussed in ref.S7

Heat source in the gain material

The gain material is heated by non-radiative relaxation and decay of electronic states into

various vibronic excitations of the dye chromophores. The corresponding heat source follows
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from the corresponding terms in an idealized 4-level system:

QG = h̄ω20γ20,nrN2 + (h̄ω30γ30,nr + h̄ω32γ32)N3 + h̄ω10γ10N1. (S9)

Here, we additionally included non-radiative relaxations from levels 3→ 0 and 2→ 0 (which

are not shown in Fig. 1). The term with h̄ω20 is more appropriate for non-radiative transitions

than h̄ω21. Indeed, in a typical 4-level dye, the vibrational-rotational structure is very

complex and includes many eigenmodes. As a result, the electronic excitation energy will

primarily thermalize through available vibronic states directly to the lowest energy level,

which is 0.

From the quasi-stationary solution of the rate equations for the population densities Ni in

an idealized 4-level system, it follows (see Kristanz,S13 Sections 2.2.4 and 2.2.1) that

N2 =
NtotWp

Wp +Ws + γ21
and Ws + γ21 = γ32

N3

N2

= γ10
N1

N2

, (S10)

with which we can transform Eq. (S9) to

QG =
(
h̄ω20γ20,nr + (h̄ω30γ30,nr/γ32 + h̄ω10 + h̄ω32)(Ws + γ21)

) NtotWp

Wp +Ws + γ21
. (S11)

Neglecting the non-radiative decay channel γ20,nr � Ws + γ21 and assuming fast relaxation

γ32 � γ30,nr finally yields

QG = Ntot(h̄ω10 + h̄ω32)
Wp(Ws + γ21)

Wp +Ws + γ21
(S12)

for the heat source in the gain material.
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The stationary solution for a continuously heated, spher-

ical nanoparticle with Kapitza resistance

In the ambient, the stationary heat equation is

∆T (r) = 0 with r > a, (S13)

with the solution

T (r > a) =
a

r
T2 + T0, (S14)

where T2 is the stationary surface temperature rise (with respect to the background temper-

ature T0) on the ambient side and a is the nanoparticle radius. The flux J over the boundary

S is continuous and fulfills Eq. (11),

J
∣∣
S

= G(T1 − T2) = −ka
∂

∂r
T (r)

∣∣
r=a

=
ka
a
T2, (S15)

where ka is the thermal conductivity of the ambient and T1 is the stationary surface tem-

perature rise on the particle side of the interface. Then, the relative change in temperature

at the boundary is

T1 − T2
T2

=
ka
Ga

, (S16)

which is inversely proportional to the nanoparticle radius a.

Quasistatic spasing condition for confocal spheroidal core-

shell structures

Before solving Maxwell’s equations for a spaser numerically, it is often a good idea to look

at their quasistatic approximation (i. e., neglecting retardation). It can be used when the
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structure under study is much smaller than the typical wavelength. Practically, this means

that the wave vector k is neglected in Maxwell’s equations. The resulting equations can

often be solved analytically and do not contain magnetic fields.

Bohren and HuffmanS14 derived a quasistatic solution for the polarizability α of a confocal

spheroidal core-shell structure in an infinite ambient (see Section 5.4, Eq. (5.35)),

α =
V
(
(ε2 − ε3)

(
ε2 + (ε1 − ε2)(L1 − hL2)

)
+ hε2(ε1 − ε2)

)(
ε2 + (ε1 − ε2)(L1 − hL2)

)(
ε3 + (ε2 − ε3)L2

)
+ hL2ε2(ε1 − ε2)

, (S17)

where ε1, ε2 and ε3 are the dielectric functions of core, shell and ambient, V is the total

volume of the structure and h < 1 is the volume fraction of the core spheroid to the entire

structure. The function Li = L(ei) depends on (i) the eccentricities e1 and e2 of the core

and shell spheroids, (ii) the polarization of the incident electric field and (iii) on whether the

spheroids are oblate or prolate. Note that the definition of the eccentricity depends on the

shape of the spheroid,

e =

√
1− c2

a2
with c < a (oblate),

e =

√
1− a2

c2
with c > a (prolate), (S18)

where c is the semi-axis parallel to the axis of revolution. If the incident electric field is

parallel to the axis of revolution, then

L(e) = Lz(e) = e−2
(
1− e−1

√
1− e2 arcsin(e)

)
(oblate),

L(e) = Lz(e) = (1− e−2)
(

1− (2e)−1 ln

(
1 + e

1− e

))
(prolate). (S19)

If the polarization of the incident field is perpendicular to the axis of revolution, then

L(e) = Lx,y(e) =
1− Lz(e)

2
, (S20)
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where Lz is the appropriate function from Eqs. (S19). By neglecting saturation effects (which

is usually justified near the threshold) and tuning the spaser to the 2→ 1 transition of the

chromophores (meaning ωs = ω21), the gain dielectric function (1) simplifies to

εG = εh − iεL,thr (S21)

at the threshold. The spasing threshold corresponds to the polarization going to infinity in

the unsaturated case, meaning that the fields in the structure become very high for very

small incident fields. In other words, sustained oscillations become mathematically possible

as a solution of a homogeneous equation, i. e., without incident field at all. This yields the

following condition for the denominator of Eq. (S17),

(
L1ε1 + (1− L1)ε2

)(
L2ε2 + (1− L2)ε3

)
+ hL2(1− L2)(ε1 − ε2)(ε2 − ε3) = 0, (S22)

which can be solved to estimate the spasing threshold. Since the complex-valued condi-

tion (S22) should be fulfilled at the threshold wavelength ωthr, we can numerically look

for solution-pairs (ωthr, εL,thr). By doing a sweep over several aspect ratios, we can es-

timate which aspect ratio is favorable in terms of spasing frequency and threshold. For

gain-core/metal-shell structures, there exist three solution branches per polarization of the

incident field that all fulfill condition (S22). They represent different surface plasmon os-

cillations:S15 the highest-wavelength solution branch corresponds to the surface charges at

the inner and outer surface of the metal shell oscillating in phase (”bonding” plasmon),

while for the lowest-wavelength branch the charges oscillate in anti-phase (”antibonding”

plasmon). It can be shown that the middle-wavelength branch always has the highest gain

threshold and is thus of no interest for us. When plotted over the aspect ratio, the three

solution branches only exist up until some aspect ratio κ0. At κ = κ0, two branches merge

and vanish simultaneously: for κ > κ0, only one branch remains (see e. g., Fig. S1b). Thus,

finding a single solution point is usually not sufficient for a complete analysis of a spaser.
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Table S1: Quasistatic results for eight different core/shell spaser configurations with shell
thickness (along all semi-axes) equal to major semi-axis h = a. The core aspect ratio is varied
from 1 (spherical) to 8 (spheroidal), larger aspect ratios would lead to unrealistically thin
structures. The shape of the spasers can be either prolate (cigar-shaped) or oblate (pancake-
shaped) spheroidal. The pumping field can either be parallel (E ‖ z) or perpendicular
(E ‖ x) to the axis of revolution z. In the reference FEM calculations (see Main Text),
the values for the shell thickness and major semi-axis are h = a = 23 nm for the prolate
metal-core/gain-shell and h = a = 30 nm for the oblate gain-core/metal-shell spaser. Every
gain-core/metal-shell configuration has three solution branches for the quasistatic spasing
condition (S22), each corresponding to different surface plasmon oscillations.S15 The middle-
wavelength branch was omitted in the table, since it always has much higher gain threshold.

Core/Shell Pol. Shape Gain threshold Generation wavelength
Metal/Gain E ‖ z Prolate 0.02 < εL,thr < 0.12 395 nm < λthr < 1177 nm
Metal/Gain E ‖ z Oblate 0.12 < εL,thr < 1.66 329 nm < λthr < 395 nm
Metal/Gain E ‖ x Prolate 0.12 < εL,thr < 0.25 359 nm < λthr < 395 nm
Metal/Gain E ‖ x Oblate 0.04 < εL,thr < 0.12 395 nm < λthr < 697 nm

Gain/Metal E ‖ z Prolate

{
0.53 < εL,thr < 34.52
0.96 < εL,thr < 14.44

412 nm < λthr < 455 nm
326 nm < λthr < 333 nm

Gain/Metal E ‖ z Oblate

{
0.07 < εL,thr < 0.53
0.83 < εL,thr < 1.74

401 nm < λthr < 537 nm
333 nm < λthr < 351 nm

Gain/Metal E ‖ x Prolate

{
0.52 < εL,thr < 1.11
0.39 < εL,thr < 0.96

370 nm < λthr < 412 nm
333 nm < λthr < 353 nm

Gain/Metal E ‖ x Oblate

{
0.53 < εL,thr < 6.13
0.96 < εL,thr < 4.51

412 nm < λthr < 419 nm
327 nm < λthr < 333 nm

Quasistatic calculations often underestimate the gain threshold for structures of realistic

size, where retardation and radiative losses start to play a role comparable with absorption.

For a system with a small gain core and a thick metal shell, however, quasistatic predictions

can be very accurate.

Table S1 shows the quasistatic results of eight core/shell spaser configurations with equal

major semi-axis and shell thickness a = h. The aspect ratio is varied from 1-8 to avoid

unrealistically thin structures. As long as geometrical similarity a = h is preserved, these

results hold for quasistatic structures of arbitrary size. Here, we imply a = h = 30 nm for an

oblate spaser, and a = h = 23 nm for a prolate one. Strictly speaking, Eq. (S22) only holds

for confocal (quasistatic) spheroids – however, it still gives a reasonable approximation for
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Figure S1: Quasistatic calculations for three spaser configurations: prolate metal-core/gain-
shell E ‖ z (red), oblate metal-core/gain-shell E ‖ x (green) and oblate gain-core/metal-
shell E ‖ z (blue). (a) Gain thresholds and (b) generation wavelengths over the range of
realistic aspect ratios. The dotted grey lines indicate the aspect ratios with a generation
wavelength of 520 nm, where the gain thresholds have local minima. For the gain-core/metal-
shell structure, the gain thresholds of the first and second branches are out of range in the
plot (see Table S1).

our geometries.

Three spaser configurations have low gain thresholds (εL,thr < 0.15) and generation frequen-

cies in the visible range (see Figs. S1a-b). We choose to simulate the oblate gain-core/metal-

shell structure with E ‖ z and the prolate metal-core/gain-shell structure with E ‖ z. The

spasers are tuned to a generation wavelength of 520 nm: there, the gain threshold has a local

minimum and the (quasistatic) aspect ratios are realistic.

Due to appreciable retardation effects, the quasistatic approximation provides a rough es-
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Table S2: Exact numeric threshold values and core aspect ratios for the spaser configurations
under study.

Spaser configuration κ εL,thr λthr
Oblate gain-core/metal-shell 6.25 0.1133 519.96 nm
Prolate metal-core/gain-shell 1.94 0.1159 519.78 nm

timation of the gain threshold, generation frequency and necessary shape of a core-shell

spaser. Using FEM simulations, we can find the exact numeric values, see Table S2. The

final geometries are shown in Fig. 2 in the Main Text.

Temperature-dependent Drude model

Since the thermal and electromagnetic problems are coupled via a temperature-dependent

dielectric function of the metal component in the spaser, a proper description of the thermal

behavior of the latter is necessary. This has been extensively measured for various metals.

For example, an overview of the temperature dependence of the dielectric function of gold can

be found in PernerS16 (Section 2.1). For silver, measurements by Sundari et al.S17 exist, but

since their imaginary part is questionably high and their real part changes with temperature,

we choose not to use their data. A different approach would be to correct a reliably measured

dielectric function using a temperature-dependent Drude model,

εAg(T ) = εJCAg + χDr
Ag(T )− χDr

Ag(T0), (S23)

εDr
Ag(T ) = ε∞ + χDr

Ag(T ), (S24)

χDr
Ag(T ) = − ωP(T )2

ω(ω + iγ(T ))
. (S25)

Here, εJCAg are the well-known measurements by Johnson and ChristyS18 (measured at room

temperature T0) and εDr
Ag is a Drude interpolation of the data with temperature-dependent

plasma and collision frequency. Do not confuse the Drude plasma frequency ωP with the
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pumping frequency of the spaser ωp.

The temperature-dependence of the plasma frequency is determined by the density and

effective mass of free electrons.S19,S20 Assuming an isotropic material, the density ρ changes

due to thermal expansion with

ρ(T ) =
ρ(T0)√

1 + 3α(T − T0)
, (S26)

where α is the linear thermal expansion coefficient. Since α is on the order of 10−5 K−1 for

metals, the total change of ωP over the available temperature range is negligible. According

to Reddy et al.,S20 the change in ωP due to a temperature-dependent electronic effective

mass is less than 10 % from 300 K to 900 K. Since both of these effects are small, we omit

the temperature-dependence of the plasma frequency for all further purposes.

The thermal behavior of the Drude collision frequency depends on the electron-phonon inter-

action. According to Ujihara,S21 the temperature-dependence of electron-phonon scattering

can be described via

γ(T ) = γ(T0)
f(T )

f(T0)
with f(T ) = T 5

∫ θ/T

0

z4dz

ez − 1
, (S27)

where γ(T0) is the collision frequency at room temperature calculated via Drude interpolation

and θ is the Debye temperature. Using the temperature-dependent measurements for the

Debye temperature by SimerskáS22 (θ(300 K) ≈ 210 K and θ(1000 K) ≈ 190 K), the tempera-

ture-dependent dielectric function for silver can be calculated. The parameters of the Drude

fit are h̄ωP = 9.169 eV, h̄γ = 0.021 eV and ε∞ = 3.58. The data was fitted with a least-square

method in the range 190-1900 nm, which emphasizes longer wavelengths. The results agree

with the measurements of the temperature-dependent dielectric function of silver thin films

by Reddy et al.S20
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Because of ω � γ, Eq. (S23) can be Taylor-expanded as:

εAg(T )− εJCAg = i
ω2
P

ω3

(
γ(T )− γ(T0)

)
+O

(
γ2

ω2

)
. (S28)

This shows that the changes in the real part of the dielectric function are negligible. The

integrand of f in Eq. (S27) can also be Taylor-expanded at elevated temperatures, which

yields for γ:

γ(T ) ≈ γ(T0)
5T − 2θ

5T0 − 2θ
. (S29)

Thus, the imaginary part of εAg increases approximately linearly with temperature.

Quasistatic estimation for the temperature dependence

of the spasing field at the threshold generation frequency

In a quasistatic core/shell spaser, the electric field E in the gain core is almost constant and

is given by Eq. (34) in Arnold et al.:S7

|E(ω)|2 = E2
sat

(
1 +

(
ω − ωthr

γL/2

)2
)(

εL
εL,thr

− 1)

)
. (S30)

Considering it on resonance (ω = ωthr) and using the two-material approximation for the

spasing threshold (Eq. (11) in Arnold et al.S12),

εL,thr =
ε′′M
|ε′M|

εh, (S31)

yields

|E(ωthr)|2 = E2
sat

(
εL|ε′M|
εhε′′M

− 1

)
. (S32)
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The spasing field in the metal, Es, is linearly related via boundary conditions to the (approx-

imately constant) electric field in the core of the structure. Thus, the expected temperature

dependence of the metal spasing field Es at the threshold generation frequency ωthr is:

|Es(ωthr, T )|2 ∝ E2
sat

(
εL|ε′M|
εhε′′M(T )

− 1

)
. (S33)

This is Eq. (14) from the main text. Due to approximations used, especially the assump-

tions of the gain core and the two-materials threshold (S31), it can serve as a guideline

only. With three materials, one can find the threshold from the zero of the denominator

in (S17) (expression (S22)). This replaces εh by εh+f , where f is a cumbersome combination

of parameters, which, however, does not change the qualitative trends. Numerical results

confirm that a similar decrease of metal field with temperature persists also for the prolate

metal-core/gain-shell geometry. However, such analytical estimations are less justified there

due to variations in saturation across the gain material.

Cooling time

Figure S2 shows the same data as in Fig. 3, but in a linear scale for both axes and on a far

longer time scale including a purely thermal cooling simulation. The metal-core/gain-shell

structure has much shorter cooling times. This is related to the higher temperature gradients

leading to a larger heat flux to the ambient; besides, in non-stationary regime, the cooling

time for an arbitrary structure is typically similar to its heating time.

Polystyrene as gain host material

In Kristanz,S13 we also simulated similar spasers with polystyrene (PS) as gain host ma-

terial. PS was recently used as a matrix for organic dyes in microresonators,S23–S25 and
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Figure S2: The average temperature T in the respective spaser components (metal and
gain). Solid curves are for the oblate gain-core/metal-shell, dashed curves for the prolate
metal-core/gain-shell spaser. The maximum operation time is 650 ps and 60 ps, respectively.
The dotted grey lines indicate the end of spaser operation and the start of a purely thermal
cooling simulation.

was also modeled in other spaser simulations.S7,S12 The PS-based spasers turn out to be

much more heat sensitive than the silica-based ones because of lower thermal stability of

PS (melting point is 510-540 K instead of 1986 K for silicaS26,S27) and its inferior thermo-

physical properties (thermal conductivity is 0.155 vs. 2.4 W/(m K), thermal diffusivity is

1.2× 10−3 vs. 8.5× 10−3 cm2/s for silicaS27–S32). As a result, the PS spasers can only oper-

ate for 110 ps (oblate gain-core/metal-shell) and 45 ps (prolate metal-core/gain-shell), before

the PS melting point is reached. This compares unfavorably with the 650 ps and 60 ps for

the silica case.
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