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Body Temperature-Triggered Mechanical Instabilities
for High-Speed Soft Robots
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Abstract

Nature offers bionic inspirations for elegant applications of mechanical principles such as the concept of snap
buckling, which occurs in several plants. Exploiting mechanical instabilities is the key to fast movement here.
We use the snap-through and snap-back instability observed in natural rubber balloons to design an ultrafast
purely mechanical elastomer actuator. Our design eliminates the need in potentially harmful stimulants, high
voltages, and is safe in operation. We trigger the instability and thus the actuation by temperature changes,
which bring about a liquid/gas phase transition in a suitable volatile fluid. This allows for large deformations up
to 300% area expansion within response times of a few milliseconds. A few degree temperature change, readily
provided by the warmth of a human hand, is sufficient to reliably trigger the actuation. Experiments are compared
with the appropriate theory for a model actuator system; this provides design rules, sensitivity, and operational
limitations, paving the way for applications ranging from object sorting to intimate human-machine interaction.

Keywords: temperature-triggered, elastomer balloon actuator, high-speed actuation, snap-through instability,
phase transition, body temperature

Introduction

In engineering, robots are designed to achieve a par-
ticular task. To fulfill their purpose, they traditionally

combine basic mechanical frameworks with pneumatic and
electric components. They are as rigid and inflexible as the
materials they are made of and, consequently, do not adapt
well to different environments and various tasks. By mak-
ing parts of the robot soft, flexible, and compliant, their
field of application can be extended.1,2 Great possibilities
exist for grabbing, moving, and sorting delicate and fragile
objects.3–5 Actuators based on soft balloons are compliant,
robust, light weight, and simple in structure and have low
costs. In Ref.6 a possible application as fast sorting device,

for example, for conveyor belts, the handling of sensi-
tive objects, and catching a falling ping-pong ball, was
demonstrated.6

In this study, we introduce a new design for soft actua-
tors based on the mechanical instability that occurs during
the inflation of a balloon made out of a natural rubber
membrane.6–8 The abrupt change in the balloon size is
triggered by the liquid/gas phase transition of a low-boiling
point fluid.9 This combination of instability and phase
transition enables fast switching operations within a few
milliseconds.

In contrast to other fast responding elastomer actuators, the
use of conformable electrodes and high voltages or explosives
is not necessary.10,11 Our approach allows safe operation and
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does not need insulation coatings for electrical protection,
which can stiffen the structure, reduce the performance, or
alter the overall behavior.12,13

By carefully selecting and adjusting the operating range,
one can trigger the mechanical instability by touching the
liquid/gas reservoir with one’s hand, as shown in Figure 1
(thermographic image and Supplementary Video S1).

We devise a model actuator system, identify its optimal
operational parameters, and validate experimental results with
analytical theoretical predictions.

Materials and Methods

To characterize the model system, we developed the
setup schematically depicted in Figure 2a. The arrangement
essentially consists of a reservoir with a sealing plug, incor-
porating the clamp for the elastomer, the supply of com-

pressed air or liquid for evaporation, and the line to the
pressure sensor (Fig. 2a). We used a commercially available
beverage can as reservoir. The beverage can offers two ad-
vantages: It is made of aluminum with good thermal con-
ductivity and is also easy to grasp and embrace with one
hand. Overall, the reservoir had a volume VR of 332 cm3.
Precision flow control valves (Festo GRPO-10-PK-3) are
used in the inlet/outlet line to achieve a controlled increase or
decrease of the pressure p. In addition, we attached two type J
thermocouples (including amplifier AD594 with cold junc-
tion compensation) to the top and bottom of the reservoir with
a heat transfer compound (thermal paste), to monitor the
temperature. Two power resistors (12O each, in series re-
sulting in Rheat = 24O) for resistive heating were placed ac-
cordingly. We mounted the setup in a polystyrene box for
thermal insulation, including a high-speed camcorder ( JVC
GC-PX10 Full HD) for video analysis.

FIG. 1. Triggering the mechanical instability by the warmth of a human hand. (a) Pictures (photographs and thermal
image) of the transition from the unactuated to the actuated state in < 4 ms (see the thermographic video, Supplementary
Video S1), the balloon is marked with a circle. (b) Pictures representing consecutive frames of the high-speed video
showing the change in volume during snap-through (top) and snap-back (bottom) instability.

FIG. 2. (a) Schematic view of the experimental setup, including the clamped elastomer membrane after triggering the
instability (Balloon state before the snap-through is indicated by a dotted curve), the camera for volume analysis, the
pressure and temperature sensors, the resistive heating, the valve for supplying pressurized air, and the inlet to add liquid
into the reservoir. (b) Measured data in the pressure-volume plane representing a full inflation and deflation cycle. The curve
is traversed clockwise, starting and ending at state 1. Photos are taken at states 1 to 6. The snap-through and snap-back
instabilities with the jumps in volume from states 2 to 3 and states 5 to 6 are indicated by arrows. The solid N-shaped curve
is a theoretical fit according to the Gent model in Equations (1) and (2), and the dashed curve represents the ideal-gas
conservation law for the enclosed air from Equation (4). (c) The detailed inset shows the change in behavior from the first to
the 10th inflation/deflation cycle due to change in material properties.
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We recorded the volume V while inflating the clamped
elastomer membrane with an average thickness of 60 lm
made from natural rubber. The camera was adjusted to focus
on the axially symmetric balloon formed by inflation. The
high-speed camcorder captured 1920 · 1080 pixel high-
resolution videos at 50 fps and 640 · 360 pixel videos at 250
fps. We used the high-speed recording mode to catch the
details of the snap-through and snap-back instabilities with a
time resolution of 4 ms. The videos were analyzed frame by
frame with a custom LabVIEW routine developed to collect
and digitize the volume data. Thereafter, the volume data
were synchronized with the respective values from the
pressure sensor (Jumo dTRANS p30).

Results and Discussions

Snap-through with pneumatic pressure control

In a first step, the pressure-volume response of the sys-
tem was recorded without liquid in the reservoir (Supple-
mentary Video S2). Figure 2b shows the measured data in
the pressure-volume plane.

In this study, the pressure p was increased at a constant rate
using compressed air supply through a valve, resulting in the
formation of a balloon with the volume V. In the process, the
membrane is subject to a purely mechanical snap-through
instability during inflation. As shown in Figure 2b, the vol-
ume increases abruptly (Dt < 4 ms) within two frames of the
high-speed video from states 2 to 3 without appreciable
change in pressure. Thereafter, the pressure rises again until
the valve is closed at point 4 in Figure 2b. This behavior of
rubber balloons is already well studied in the literature.14

The pressure–volume dependence for an inflatable rubber
membrane follows a nonmonotonous N-shaped curve, with a
critical pressure reached at point 2. This is illustrated in
Figure 2b, where experimental results are fitted with a theo-
retical curve for the equilibrium overpressure p inside a thin
spherical balloon made of an incompressible elastomer.

The physical origin of N-shaped dependence can be un-
derstood from the differential work-energy balance during
the balloon inflation. Upon a small volume increase dV, the
pressure performs work pdV, while the elastomer energy
changes by VEdW , where VE is its constant volume, and W is
the configurational part of the volumetric strain (free) energy
density (for equal-biaxial deformation in our geometry). For
a thin incompressible spherical elastomer balloon with the
varying radius R¼ kR0 the lateral stretch k is related to the
volume inside the balloon by V ¼ 4pR3

0k
3=3, and one obtains

the following equation for the pressure:

p¼ H0

R0k
2

qW

qk
, pe �

12

77=6

lH0

R0

� 23:3 kPa (1)

In this study, H0¼ 60 lm and R0¼ 0:185 cm are the initial
thickness and the (equivalent) initial radius of the membrane.
Due to incompressibility k1k2k3¼ 1, the energy density W
always contains nonlinearity at appreciable stretches. Al-
ready the simplest hyperelastic neo-Hookean expression

W~+3

i¼ 1
k2

i ~equal� biaxial
2k2þ k� 4, together with the factor

k� 2 in Equation (1), results in the pressure dependence

p~k� 1� k� 7. The different signs of terms stem from the
rates of changes in the energy W with respect to lateral

and ‘‘thickness’’ directions. At small stretches, the second,
‘‘thickness’’ term dominates and the pressure increases,
while at large stretches, the lateral contribution (first term)
wins and the pressure falls pe in Equation (1) is the maximum
pressure at point 2 in the neo-Hookean approximation, which
provides the scale for the pressure values. At very large
stretches the elastomer stiffens due to the finite extensibility
of the polymer chains, and p(V) curve in Figure 2b bends
upwards at large V. In our case, this is described by the Gent
hyperelastic model15:

W(k)¼ � l Jlim

2
ln 1� 2k2þ k� 4� 3

Jlim

� �
(2)

Above, l & 0.58 MPa is the small-stress shear modulus,
and Jlim & 46.99 accounts for the stiffening at large defor-
mation. For our parameters, the system can be considered
quasi-statically (the applicability limits are discussed in sec-
tion Dynamic limitations below). In the experiment, the
amount of air in the system (total number of molecules N) is
slowly increased through the valve in Figure 2a, so that the
gas-dynamic effects are negligible. The common overpressure
p with respect to the atmospheric pressure patm is the same
everywhere in the balloon V and reservoir VR. We assume that
the gas obeys the ideal-gas law at the constant temperature T:

(pþ patm)(V þVR)¼NkBT (3)

Here kB is the Boltzmann constant. Resolving Equation (3)
for p we obtain:

p¼ NkBT

V þVR

� patm �
NkBT

VR

1� V

VR

� �
� patm (4)

The second expression represents the first two terms of the
Taylor expansion for V=VR << 1. In equilibrium, this pres-
sure should be equal to the elastic value [Eq. (1)]. The
pressure p in Equation (4) slowly increases with added gas N,
reaching the critical value at point 2 in Figure 2b. Further
increase in pressure becomes impossible, and the very fast
(< 4 ms) snap-through to a new equilibrium (point 3) occurs.
During this almost instantaneous transition, the total number
of air molecules in the system remains virtually constant
(N& 1022). As the balloon volume V increases, p decreases
according to Equation (4). However, when the reservoir is
large compared to the balloon, VR >> V , the pressure re-
mains almost constant. The influence of an additional cham-
ber was studied by Keplinger et al.,7 to provide a loading path
for a dielectric elastomer actuator averting electrical break-
down, and discussed theoretically by Zhu et al.,16 providing
guidelines for choosing an appropriate chamber size.

In our case V=VR � 5:7 · 10� 3, the relevant part of the
hyperbola [Eq. (4)] in the p-V plane looks like an almost
horizontal line with < 0.6% change in the overall pressure
(&700 Pa). Equation (4) is sketched in Figure 2b as a dashed
curve, tangential to the pressure-volume curve of the elas-
tomer membrane according to Equations (1) and (2) at the
snap-through point 2. The second intersection of these two
curves defines the equilibrium state after the snap-through;
the transition itself roughly follows the membrane p-V
curve,6 modified by nonisothermal and dynamic effects.
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The transient behavior cannot be resolved on the present
time scale, due to the much smaller size and the correspond-
ingly faster dynamics of the current setup. During the rapid
snap-through, the membrane quasi-adiabatically heats by
several degrees.8 As it thermalizes back to room temperature,
the elastomer softens proportionally,17 slightly increasing the
balloon volume, which can be seen in Figure 2b, after the point
3. The gas entering the balloon somewhat cools down semi-
adiabatically, but the pressure corrections in Equations (3) and
(4) remain small, as long as V=VR << 1. Thus, both effects
contribute a few percent at most, and the real process falls
between the isothermal and adiabatic limits.

If the balloon is inflated and deflated several times, the
rubber membrane is cyclically loaded, revealing material-
dependent effects. First, the elastomer membrane shows an
intrinsic hysteresis due to stretch-induced crystallization,8,18

so that different curves in the p-V plane are followed for
inflation and deflation.6 Furthermore, natural rubber softens
appreciably during the first loading cycles (Fig. 2c)—this is
known as Mullins effect.19 The measurements show that after
about 10 cycles the additional changes become negligible,
and the sequential cycles coincide with each other.

The acetone vapors may alter elastic properties of the
membrane and/or diffuse through it. We did not observe such
effects during *1 h long experiments. Moderate acetone loss
is irrelevant, as liquid is in surplus, and the vapor remains
saturated. However, over the long term, these issues are of
concern, and the influence of different liquid agents on the
polymer membrane, as well as alternative combinations of
volatile liquid and/or membrane materials, should be per-
formed for practical implementations.20

Thermally triggered actuation driven by liquid/gas
phase transition

The snap-through instability discussed above may be used
to produce a fast direct mechanical response to a thermal
stimulus, without any intermediate electronic control. The idea
is to modulate the pressure in a sealed reservoir volume using
the saturated pressure of a volatile liquid agent. A thermal
stimulus can come from an external heater or the body warmth
of a person and thus can be used to detect the touch.

Within the applicability of Dalton’s law, the total pressure
inside the reservoir and balloon is the sum of the partial air
pressure pa and the saturated vapor pressure ps. The partial
pressure of air obeys the ideal gas law, similar to Equation
(3), with a different, but constant number of molecules N:

pa(V þV ¢R)¼NkBT (5)

V ¢R is the reservoir volume accessible for the gas, that is
without the volume of the added liquid VL. Typically,
VL < < VR, so that V ¢R � VR, and the change in liquid
volume upon evaporation can be neglected.

The pressure of the saturated vapor is given by the
Clapeyron–Clausius relation,21 resulting in a steep expo-
nential dependence on temperature:

ps¼ p0e�
Tv
T ¼ patme

Tv
1

Tb
� 1

T

� �
� ps(T0)e

T �T0
TFK , TFK¼

T2
0

Tv

(6)

In these equations, Tv¼ L=RG is the Arrhenius exponent,
related to the latent heat of vaporization per mole L through
the universal gas constant RG, and p0 being some prefactor.
Both are approximately constant. The second equality is
expressed through the boiling temperature Tb, where by
definition ps(Tb)¼ patm applies. The third expression is a
Taylor expansion of the Arrhenius exponent near the refer-
ence room temperature T0¼ 293 K, emphasizing the expo-
nential behavior for small temperature changes [Frank–
Kamenetskii (FK) approximation]. The total overpressure
p¼ paþ ps� patm thus becomes:

p¼ NkBT

V þV ¢R
þ patm e

Tv
1

Tb
� 1

T

� �
� 1

 !

� NkBT

VR

� patmþ ps(T0)e
T �T0
TFK (7)

This expression implies that enough liquid is present, so
that it never fully evaporates, both phases are in thermody-
namic equilibrium (no kinetics, saturated vapor), and volume
changes due to the liquid are negligible, V ¢R � VR¼ const.
The second equality uses FK approximation from Equation (6).

As before, the equilibrium overpressure p given by the
Equation (7) is equal to the quasi-static elastic expression
[Eq. (1)]. The first term in Equation (7) depends on volume in
the same way as in Equation (4), while the second term does
not depend on V at all. Thus, the p(V) dependence [Eq. (7)] is
a very flat hyperbola, which can similarly be approximated by
an almost horizontal line. The multiplier in the first term is
linear in temperature, while the second additive term has a
steep exponential temperature dependence. In fact, the shear
modulus in Equations (1) and (2) is itself proportional to
temperature,17 l¼ l(T0)T=T0, so that the pressure disbalance
is almost exclusively due to the ps(T) dependence (precise
analysis should consider temperature transients).

An increase in T shifts the hyperbola [Eq. (7)] up; when the
intersection with the curve [Eq. (1)] near the state 2 ceases to
exist, fast snap-through to the new equilibrium state 3 occurs.
The only difference is that previously the hyperbola was
scaled up by the influx of air (slow increase in N), while now
N¼ const, and the hyperbola is shifted upwards by the tem-
perature, through the steep ps(T) dependence of the additive
term in Equation (7).

We tested several low-boiling point liquids as a phase-
change agent; acetone with Tb¼ 329:3 K¼ 56:15�C and
L¼ 31:3 kJ=mol near room temperature22 showed the best
results. Using these data and the Antoine equation, we de-
duce Tv¼ 3764:5 K, TFK¼ 22:83 K, and ps(T0)¼ 24:6 kPa,
which are close to the snap-through pe value in Equation (1)
and Figure 2b. The exponential term in Equation (7) increases
the pressure by about 1.1 kPa/K near T � T0.

The results of the experiment in which the instability was
triggered purely thermally are shown in Figure 3. In this
study, a small amount (1.5 mL) of liquid acetone is added to
the system through the inlet in Figure 2a, and the system is set
to an initial pressure of 11.5 kPa following a pressure ramp
using the compressed air supply. Thereafter, the reservoir is
sealed. Resistive heating of the system with constant power
P¼ 3:6 W (comparable with the heat flow from human
hands) starts at the time t1 at the bottom of the reservoir. This
leads to a gradual increase in the saturated and the overall
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pressure according to Equation (7), which can be seen in
Figure 3a for t1 < t < t2, when finally snap-through occurs.
The observed pressure change of about 7.5 kPa corresponds
to an increase of acetone temperature by about 7 K. Although
the heating is externally stopped when snap-through is ob-
served, the balloon volume still expands further. This is be-
cause the membrane adiabatically heats in a fast expansion,8

while the gas inside the balloon semiadiabatically cools. As
thermalization of both materials toward the ambient tem-
perature starts for t > t2, the elastomer softens (l ~ T), while
the gas heats. Both factors slightly increase the balloon vol-
ume. Because the system is enclosed into an insulation box,
the temperature inside the reservoir drops slowly after the
heating is switched off. A cooling spiral around the outer
walls of the reservoir with circulating refrigerating fluid cools
down the system effectively. Active cooling is started at the
time t3. As the temperature decreases, the acetone saturated
pressure ps(T) drops, and snap-back occurs at the time t4.
Subsequently, the process is repeated.

In the experiment, the cycle time exceeded t2� t1¼ 153 s
and required an energy expenditure of about 550 J (Fig. 3).
The system was not optimized, and the results show the im-
portance of the initial state for the overall performance.

To achieve high sensitivity and a fast response, the system
should be brought slightly below the verge of instability
(critical pressure state 2). As a result, mechanical energy is
stored in the system and the energy barrier for triggering
the instability is reduced to a suitable level, so that a small

thermal increase in the saturated and the overall pressure
causes the snap-through. Nature exploits the same principle
to enable the rapid movements of several carnivorous
plants23: A slow accumulation of mechanical (elastic) energy
is followed by its rapid release triggered by a small stimulus.
For carnivorous plants, the control of elastic instabilities in
geometrically slender parts of their trapping mechanisms offers
an alternative to the muscle-powered movements in animals.

Fine-tuning of our setup provided an even higher sensi-
tivity of about 2 K, which can be readily provided by a human
hand (Fig. 1a). In this study, keeping the room temperature
constant is the limiting factor. Due to the steep ps(T) de-
pendence, the air pressure in the device should be adjusted
with respect to the actual room temperature.

Dynamic limitations

One of the distinct attractive features of our setup is its small
size, resulting in an exceptionally fast time constant for a
mechanical elastomeric device. It is instructive to discuss the
physical factors limiting its operational speed. For fast snap-
through and snap-back stages the quasi-static approximation
should be replaced by the appropriate dynamic equations, for
example, using Euler–Lagrange formalism.24 Gas dynamics
analysis of the gas flow between the reservoir and the balloon
can be required as well. A first insight into dynamics of di-
electric elastomer actuator was provided by Xu et al.,24 Zhu
et al.,25 Zhang et al.,26 Li et al.,27 and Chen et al.28 These
works focus on the role of membrane inertia. If the balloon of
radius R and thickness H expands with the speed v¼ dR=dt,
force balance results in an equivalent dynamic overpressure:

pm � qHdv=dt � 34:9 Pa (8)

In the numerical estimations we used experimental values
DR ~ R¼ kR0 � 1 cm, H¼ k� 2H0 � 60 lm, Dt � 4 ms, v �
2:5 m=s, dv=dt � 625 m=s2, elastomer density q~0:93 g=cm3.
Below, we also use air density qair~1:225 kg=m3 and speed
of sound c¼ 343 m=s. The obtained inertial overpressure is
small in comparison to values used in the experiments.
However, the expanding balloon also compresses and ac-
celerates the air in its path, producing spherical sound waves.
The (over)pressure within such waves can be deduced from
Equation (9) in Ref.29

pS � 2qairv
2 � 15:3 Pa (9)

This is even smaller than the inertial overpressure [Eq.
(8)]. However, if the balloon is large, the situation is closer to
a one-dimensional (1D) piston, which is described in Ref.,30

x99, Problem 1. For v� c one obtains:

pp � qaircv � 1050 Pa (10)

This is a much larger value, comparable with the saturated
vapor pressure change per Kelvin, raising the question which
of the estimations [Eqs. (9) and (10)] is more relevant for
our case. The solution [Eq. (7)] in Ref.29 implies that the
spherical piston starts from R(0)¼ 0 with constant velocity
dR=dt¼ v¼ ac (c is denoted as a there), and the sound wave
relaxes appreciably when it reaches the radius R(t). However,
this spherical sound solution can be modified to describe our

a

b

FIG. 3. (a) Increase in the overall overpressure (left axis)
upon resistive heating with the constant power P (right axis)
triggering the snap-through instability at t2. Active cooling
is started at t3 until the snap-back occurs at t4. (b) Accom-
panying change in balloon volume, calculated from the
high-speed camera recording.
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situation, assuming that the piston starts moving from a finite
radius and time R(t0)¼R0¼ vt0. In notations of Ref.,29 the
initial condition for the disturbance changes from f (0)¼ 0 to
f (w0)¼ 0, where w0¼ (a� 1)ct0 < 0. As a result, in Equa-
tion (7) of this Ref., the constant C 6¼ 0, but should be found
from the condition f (w0)¼ 0. The expression that becomes
zero at w0 is:

f (w)¼ ca3w2
0

1� a2

w2

w2
0

� w

w0

� �a� 1
a

 !
(11)

The derivative of this expression is used to find the over-
pressure behind the sphere from the Equation (3) there, using
r¼R, R� ct¼w, and therefore R¼ vt¼ aw=(a� 1).

Dp¼ � qc

R
f ¢(w) ¼ qc2a2

1þ a
2þ 1� a

a
w

w0

� �� 1
a� 1

 !
(12)

We further simplify this for a¼ v=c < < 1, which holds
in the sound limit and is fulfilled for our numbers, see the
estimations below Equation (8). Furthermore, as R¼ vt¼
aw=(a� 1), we can replace w=w0¼ t=t0, where t0¼R0=v is
the starting time for the expansion, where w¼ 0. This results in:

Dp � qair 2v2þ cv
t

t0

� �� c
v
� 1

 !
(13)

This expression describes the transition from the initial
large 1D overpressure qaircv near t¼ t0 [Cf. Eq. (10)] to the
small three-dimensional sound overpressure 2qairv

2 at longer
times [Cf. Eq. (9)]. Both terms in Equation (13) become equal
at a time t¼ t0þ t1, when

2v

c
¼ 1þ t1

t0

� �� c
v
� 1

0
t1

t0

� ln (c=2v)

1þ c=v
<< 1 (14)

The last ratio is � 0:036 for our numbers. Because the
snap-through time is of the order of t0, this implies that the
overpressure is ‘‘high’’ during the first several percent of the
expansion. After that, the sound wave detaches from the
balloon surface, and the pressure there decreases. In practice,
the acceleration of the balloon is more gradual, and the initial
overpressures are lower than estimated in Eqs. (10) and (13).

The spherical acoustic problem can be solved for an ar-
bitrary prescribed expansion dynamic R(t), using Fourier
results for a given frequency x. The reaction force on a
sphere sinusoidally oscillating with velocity amplitude v is
given, for example, in Ref.,30 x74, Problem 1. Recalculating
it into pressure, we obtain:

px¼ qaircve� ixtkR
i(2þ k2R2)� k3R3

3(4þ k4R4)

0
kR >> 1, 1

3
qaircv

kR << 1, 1
6
qaircvkR

(15)

The upper limit corresponds to the ‘‘large’’ spheres and
pressures. Our numbers are closer to the ‘‘small’’ lower
values with x � 1:5 · 103 s� 1, kR � 0:05. This results in

px � 8 Pa, similar to the estimation [Eq. (9)]. The estima-
tions [Eqs. (8)–(15)] show that the expansion speed is often
limited by the inertia of the air, rather than of the membrane
itself. For a balloon, these effects can be even higher by a
factor of about 2, due to similar rarefaction effects on the
inner side of the expanding membrane.

If the overpressures [Eqs. (8)–(10)] are added to the r.h.s.
of the first expression in Equation (1), one obtains dynamic
equations, most conveniently in terms of k. In a snap-through,
or if pressure is instantaneously increased to the character-
istic value pe, the elastic contribution is small, and the time
constants can be estimated as:

pe~pm~qH0R0k
� 2 d2k

dt2
0sm~

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qH0R0

pe

s
~

ffiffiffiffiffiffiffiffi
qR2

0

l

s
� 0:07 ms

pe~pS~2qairR
2
0

dk
dt

� �2

0sS~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qairR

2
0

pe

s
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qairR

3
0

lH0

s
� 0:02 ms

pe~pp~qaircR0

dk
dt

0sp~
qaircR0

pe

~
qaircR2

0

lH0

� 0:03 ms

(16)

Here, the first estimations for the time constants s are in
terms of pe [Eq. (1)]. Substituting its expression from there
(omitting 12=77=6 � 1:24), we obtain the dependence of
characteristic times on the system parameters l, H0, R0

(second equalities for s). They show how the device dy-
namics scales with size. A smaller radius R0 and a larger
product lH0 (stiffer membrane) reduce the mechanical time
constants. The overall response times are governed by the
thermal parameters and decrease sharply for smaller sizes,
according to tT~ R2

0=D, where D is the effective thermal
diffusivity of the system. It may depend on the reservoir size
and geometry and on the combinations of thermophysical
parameters of materials.

The intrinsic pressure sound equilibration time sse~
R0=c � 5 ls is usually (much) shorter. In practice, dynamics
is often limited by the gas flow through the valves and in the
reservoir between the valve and membrane.

Conclusions

A natural rubber balloon mounted on a sealed chamber
of appropriate volume is a structure possessing two stable
equilibria for a given common pressure: one with a small and
one with a large balloon volume. The transition between
these states happens on the timescale below 4 ms. We utilize
this bistable system to create an ultrafast purely mechanical
switch, or sensor, which operates without any electronic
components. In a temperature-driven actuation the internal
pressure change is provided by the liquid–gas phase transi-
tion of a suitable volatile fluid agent (acetone). The associ-
ated pressure change is about 1.1 kPa/K, which is readily
activated by the warmth of a human hand or other comparable
heat sources.

Theoretical analysis of the device performance and sen-
sitivity is provided and compared with experiments. Fur-
thermore, the physical limitations for the maximal
operational speed are discussed. In many cases the limiting
factors are the internal gas dynamics and the inertia/sound
effects in the added (induced) air mass, rather than the
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acceleration of the membrane itself. The system response
times, both thermal and mechanical, decrease with the system
size about quadratically. This bodes well for the further op-
timization, speed enhancement, and miniaturization of the
setup in possible applications. The very short response time
and compact design, as well as the possibilities for further
improvement, make this actuator concept an attractive can-
didate for future applications in safe object handling, for
haptic interfaces, as soft sensors and in soft robotics.
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