P-NESY7: Neutron Holography of Metal Hydrogen Systems

L. Cser¹, G. Krexner², M. Prem², I. Sharkov³, G. Török¹

¹ Central Research Institute for Physics, Budapest, Hungary
² Institute of Experimental Physics, University of Vienna, 1090 Vienna, Austria
³ Institute of Physics, Chair of Optics and Spectroscopy, St. Petersburg State University, 198904 St. Petersburg, Russia

Neutron holography constitutes a novel technique to obtain structural information on an atomic scale. It is based on the recording of the interference of neutron waves which are coherently scattered by atomic nuclei located on a crystal lattice with a suitable reference wave. Neutron holograms can be recorded using two complementary schemes, one of which is discussed in detail. In this approach, a point-like source of spherical neutron waves is required inside a single crystal which can be realized by making use of the large incoherent neutron scattering cross section of hydrogen nuclei, i.e. protons. When a sample containing substantial amounts of hydrogen is placed in a monochromatic beam of slow neutrons the protons will emit spherical neutron waves as a result of incoherent scattering. The interference between the undisturbed spherical wave field and that part of the wave which is scattered by neighboring atoms is recorded over a wide range of different orientations of the sample with respect to the detector thereby producing a hologram. We demonstrate the feasibility of the method by performing a holographic reconstruction of the positions of the metal atoms around protons on octahedral interstitial sites in a palladium-hydrogen single crystal.

Vortragsart: Poster