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ABSTRACT

Large molecules such as proteins have many of the properties of neural networks. Hence,
neural networks may serve as a natural and thus efficient method to compute the time
dependent changes of the structure in large molecules. We describe how to encode
the spatial conformation and energy structure of a molecule in a neural network. The
dynamics of the molecule can then be computed from the dynamics of the corresponding
neural network. As a detailed example, we formulated a Hopfield network to compute
the molecular dynamics of a small molecule, cyclohexane. We used this network to
determine the distribution of times spent in the twist and chair conformational states as
the cyclohexane thermally switches between these two states.

Keywords : Neural network, molecular dynamics, kinetics, protein motions, cyclohexane.

1. Introduction

In different scientific fields a new type of model has been useful in understanding
how global properties of a complex system arise from the interplay of many local
interactions. In psychology these models are called neural networks [1,19]. In
computer science they are called parallel, distributed processing [34,35]. In physics
they are called spin glasses [2,9]. A neural network, for example, consists of nodes
and connections between them. At each time step the value of a node is updated.
The new value depends on the values of the other nodes connected to it and the
strength of their connections.

Large molecules, such as proteins, also consist of many interacting pieces. An
ion channel protein, for example, has approximately a 1000 amino acid residues
that interact by atomic bonds and electrostatic forces. Proteins have many of the
characteristics of neural networks such as: frustration, energy landscapes with many
local minima and ultrametricity [11,12,2533,41,47,48]. In a protein, sidechains,
regions and subunits can have multiple orientations in space that conflict with each
other. There is no one structure that can satisfy all these conflicting constraints
to uniquely minimize the energy. This property is called “frustration.” The large
number of different possible structures corresponds to an energy landscape with
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many local minima. In changing from one conformational state to another, the
protein must temporarily increase in energy to cross the hills in the energy landscape
separating those states. That is, the protein structure needs to unfold slightly before
1t can refold in a different way. This property is called “ultrametricity.”

Neural networks have been used as computational devices to predict the sec-
ondary structure of a protein (a-helix, S-sheet, etc.) from the primary sequence
of amino acid residues [5,39]. Because of the common features between neural net-
works and proteins described above, neural networks have also been used as physical
models of the structure and thermodynamical properties of proteins [11,12,41,48].
In this article we present a new application of these common features. We show how
to construct neural networks with an energy structure similar to a given molecule,
so that the dynamics of a molecule can be computed from the dynamics of the
corresponding neural network. This approach leads to a new way of thinking about
molecular dynamics. It may also lead to the development of faster algorithms to
compute molecular motions.

Protein motions are important in how proteins function as structural units,
how they catalyze chemical reactions and how they bind ligands [12,25]. Protein
motions are now calculated by evaluating the force on each atom, updating its
position and then repeating this procedure many times [33]. However, these time
steps must be very small in order to accurately compute the new positions of the
atoms. The 100 000 time steps needed to compute the motions of myoglobin over
10719 s required 6 hours of supercomputer time [25]. Thus, this presently used
approach is inadequate to study important motions within proteins that extend
from nanoseconds to minutes,

Transforming a problem into a different but mathematically equivalent form
can sometimes lead to a much more efficient computational algorithm. For exam-
ple, recent box counting algorithms have reduced the computational time for fractal
dimensions by three orders of magnitude [4,24,30]. Because neural networks and
proteins share common features, the neural network is a natural representation,
and thus may be a much more efficient method for the computation of molecular
dynamics. Moreover, neural networks may achieve additional gains in computa-
tional speed because they are simple and intrinsically parallel structures that can
take good advantage of computers with parallel architectures and custom integrated
circuits.

In this article we explore the use of neural networks to compute molecular dy-
namics. First, we outline the properties of neural networks. Then we describe
different ways that neural networks can be formulated to compute molecular dy-
namics. We then present a detailed formulation and analysis of the properties of
one type of network, the Hopfield network, and show how it can be used to compute
molecular dynamics. As an illustrative example, we used a Hopfield network to com-

pute the dynamics of cyclohexane switching between twist and chair conformational
states.
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alation of Neural Networks to Compute Molecular Dynamics
2. Form

2.1 Neural Networks
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Fig. 1. Schematic representation of a neural network. The network consns?;s of nodes (cul'cles)fairtlh
cori.xec.tions (arrows) between them. Each node has a value associated v}vllth it. ’Lhe \;’t u::n(()1 i
i 1 i the value of a node is updated. The new value dep
node is equal to S;. At each time step, : .
the values of other nodes, such as S;, and the strength .J;; of the connections between them

Between any pair of nodes, the connection strengths can 'be equal in both (:)1-
rections (symmetric) or unequal (asymmetric). The connection strengths tc}:lm Z
assigned directly, or determined by a learning Procedure where t.he st;'rengt s ar
adjusted so that the network produces the requ1r.ed output for a.glven 1nPu .

The values of the nodes can be updated continuously or at dlscrett? time ste:ps.
In the case of discrete updating, the new value of a node (S;) at each time step isa
function of the values of the other nodes (S;) and the stl:ength of the connec;ut)}rlls
(7i;) between them. This function may directly determme' the new value of the
node or determine the probability that the node has a certain value.
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In order to use a neural network to compute molecular dynamics we must:
(1) encode the spatial structure of the molecule in the values of the nodes,
(2) determine the topology and the strengths of the connections between the nodes
so that the network has the same energy structure as the molecule, and (3) update
the values of the nodes in a way that includes both the influence of thermal fluctu-
ations due to the interaction with environment and the forces within the molecule
that are modeled by the connection strengths. The output of the computation is
the value of the nodes, and thus the spatial structure of the molecule, as a function
of time.

We now consider these issues of determining the encoding, the connection
strengths, and the updating method.

2.2. Encoding the Spatial Structure

The structure of the molecule needs to be represented in the values of the nodes of
the neural network. This can be done in different ways. The method chosen will
be most efficient when the encoding is based on the form of the molecule. It should
also be chosen so that it simplifies the computation of the energy of the network. In
a protein, for example, the values of the nodes can encode the spatial positions of
atoms, amino acid residues, or subunits of the molecule. Tn each case, the values of
the nodes can represent either the spatial coordinates, the angles between the units
(such as the ¢, ¢ angles between amino acid residues), the coefficients of a series
expansion of the spatial positions based on polynomial splines [42,43], or Fourier
components [49], or a number identifying the spatial location corresponding to a
conformational state (such as —1 if an ion channel protein is closed and +1 if it is
open).

It is important that the change of a value of one node should correspond to a
small change in the spatial structure of the molecule. For example, a poor encoding
would be one where the coordinates of the positions of each atom are represented
by the binary number formed from a set of nodes, each of which has the value 0 or
1. The problem with this encoding is that a change in the value of only one node
in a position corresponding to a high power of 2 will produce a large change in the
number denoting the spatial position of the atom in the molecule.

2.3. Topology and Connection Strengths

We studied three types of neural networks to compute molecular dynamics: activa-
tion networks, layered networks and Hopfield networks.

In the activation network all the nodes are connected to each other. The values
of the nodes (S;) are typically continuous and the connection strengths are typically
asymmetric (J;; # Jji). These networks were developed to describe the behavior
of the brain in analyzing sensory input [7]. In that case, the values of the nodes
correspond to the strengths of characteristic features [34]. These networks are
also useful for classifying data into clusters with different characteristics [26]. In
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computing molecular dynamics, the connection strengths are determined from the
influence of one node on another. For example, if the nodes are atoms, the strengths
can be made proportional to the force of one atom on another. If the nodes are
amino acid residues, the strengths are proportional to the interactions between
pairs of residues that can be described by a two dimensional connectivity matrix
|(5‘-_Irl]. In some preliminary studies we used an activation network to compute the
switching of cyclohexane between its twist and chair conformational states. Each
node corresponded to one of the six carbon atoms. The value of each node was 1 if
the carbon atom was closer to its position in the twist configuration and —1 if the
carbon atom was closer to its position in the chair configuration. The connection
strengths were determined from the change in energy computed by the program
Insight II (Biosym Technologies Inc.) when the position of one atom at a time was
perturbed.

In the layered network with three layers, a layer of input nodes connects to a
[niddle layer of nodes, which is in turn connected to an output layer of nodes [13,35).
The middle layer is called a hidden layer because it is not connected directly to the
input or output signals. The values of all the nodes are typically continuous. The
connection strengths are typically asymmetric. The values of the output nodes are a
nonlinear function of the values of the input nodes. These networks were developed
because networks without a hidden layer could not compute some simple functions
(such as the output of the exclusive “or” function from two input values). The
hidden layer usually has fewer nodes than the input layer. Thus, the hidden layer
extracts the characteristics of the input and presents them as a smaller number
of input values to the output layer. These networks are popular in applications
because the connection strengths do not have to be computed explicitly. They
can be determined by a learning procedure (such as back propagation) where the
connection strengths are iteratively adjusted to provide the best match of output
values compared to the desired output values for a training set of input values. In
computing molecular dynamics, the connection strengths can be determined by a
learning procedure. For example, an energy computation program (such as Insight
IT) may be first used to compute the energy of the molecule in different conforma-
tional states and perturbations of the positions of the atoms from those states. The
connection strengths can then be determined by using a training procedure to find
the connection strengths that provide the closest output energies for the structural
information held fixed at the input nodes. It is not yet clear how large a training
set is needed to adequately represent a protein. The representation formed in the
hidden layer provides an approximate representation of the energy of the molecule
as a .function of its spatial structure. Once the connection strengths have been de-
termined, the values at the input nodes that represent the structure of the molecule
are no longer held at their fixed input values, but are free to be determined by the
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In the Hopfield network all the nodes are connected to each other. The val-
ues of the nodes (S;) are typically discrete (such as —1 and +1) and the con-
nection strengths are symmetric (J;; = Jj;). The stable conformational states
of the molecule, and perhaps some additional states, are represented as memo-
ries. The connection strengths are directly computed from these memories. These
networks were formulated using concepts from thermodynamics and dynamical sys-
tems [2,9,21,22,23]. Thus, their energies and dynamics most closely resemble those
in physical systems such as molecules. Hence, we felt these networks were the most
promising type to use to compute molecular dynamics. The properties of these
networks and their application to computing molecular dynamics are described in
detail below.

2.4. Updailing and Dynamics

There are different methods to update the values of the nodes. In synchronous
updating all the values of the nodes are changed simultaneously to their new values.
In asynchronous updating the value of one node at a time is changed. The node
chosen for updating can be determined randomly or by a preset order. The dynamics
of some networks depends on the updating method used [2]. In computing molecular
dynamics, the dynamics of the network must not depend sensitively on the details
of the updating method used. We found that our simulations of small activation
networks were most robust when the value of one randomly chosen node was updated
at each time step.

The new value of each node is a function of the values of the other nodes and
their connection strengths. This function consists of two components. A deter-
ministic component represents the deterministic forces in the molecule. A random
component represents the stochastic forces due to thermal energy. The dynamics
of the neural network determined by the updating method must correspond to the
physical dynamics of the molecule. For example, it can be shown that the updating
method (described below), based on Glauber dynamics, does correctly lead to a
fraction of time spent in each of two states that is equal to exp(—AE/kT) where
AE is the energy difference between the two states, k is the Boltzmann constant
and T is the absolute temperature. For the Hopfield network the “energies” of the
network correspond to the physical energies. Thus, the dynamics of these networks
can be directly related to the dynamics of the molecule. For the activation and
layered networks it is less clear how to relate the “energies” of the network to the
physical energies.

3. Hopfield Network

3.1. General Formulation

In this network all the nodes are connected to each other [21-23]. In the original
model the values of the nodes had two discrete values. This was later extended to
continuous values. Here we will use binary nodes with the discrete values of S; = —1

B




connected to each other. The val-
such as —1 and +1) and the con-

The stable conformational states
| states, are represented as memo-
iputed from these memories. These
hermodynamics and dynamical sys-
'namics most closely resemble those
ve felt these networks were the most
dynamics. The properties of these
10lecular dynamics are described in

lues of the nodes. In synchronous
simultaneously to their new values.
de at a time is changed. The node
7 or by a preset order. The dynamics
od used [2]. In computing molecular
ot depend sensitively on the details
our simulations of small activation
‘randomly chosen node was updated

f the values of the other nodes and
sists of two components. A deter-
c forces in the molecule. A random
- to thermal energy. The dynamics
ing method must correspond to the
, 1t can be shown that the updating
dynamics, does correctly lead to a
t is equal to exp(—AE/kT) where
bates, k is the Boltzmann constant
field network the “energies” of the
us, the dynamics of these networks
molecule. For the activation and
1e “energies” of the network to the

each other [21-23]. In the original
values. This was later extended to
with the discrete values of S; = —1

D gl

Neural Networks to Compute Molecular Dynamics 199

8 = +L Hopfield showed that if the connection strengths'were symrTletric
IU”. = J;;) the network had two important properties. First, a physically meaningful
h;1='~ri§.\-' function could be defined. Second, the values oft the nOfles of the network
.;._,.O]Vt' in a way that continually lowers the energy function, until the values of the

nodes reach the values corresponding to a “memory” encoded in the co'nnection
strengths. The memories correspond to local minima of the? energy funCtIOTl. T.he
network evolves, like a dynamical system dominated by friction rather than inertia,
travelling downhill in an energy landscape until it reaches the memory at the energy
minimum. The network is called associative or content addressable because the
final values of the nodes share common characteristics with the initial values of the
nodes. The original idea was that all of the energy minima would corre.spond ‘to
the memories encoded in the network. However, additional shallow minima arise
from the interactions between the memories. In the original deterministic updat'mg
method the network sometimes reached and remained in these spurious memories.
This can be avoided by using stochastic dynamics which makes it possible to go
uphill in energy, with small probability, and thus escape from the shallow local
minima of the spurious states.
The energy F has the form:

N
E = _% > 5SSy, (3.1)
i,j=1
where N is the number of nodes in the system, S;, S; = £1 are the values of nodes
i and j, and J;; is the connection strength between them. The state of the network
at a given time is given by the values of all the nodes, which we denote by the
N-dimensional vector
S=(S5,...,5n) (3.2)
which has components S; = 1. Equation (3.1) is the form of the energy for
a system with N binary nodes where there are long range interactions that are
bilinear in S;.
Each memory corresponds to a set of values of the nodes. Thus, each memory
can also be represented as a vector

E=(&1,...,¢N) (3.3)

with N components, each of which ; = £1. The values of the components of these
memories are determined a priori. They depend on how the problem to be solved
1s encoded into the network. If there are p different memories, then the entire set
of memories can be represented by the vectors

The connection strengths J;; are determined from the memories, namely

1 p
Sy =5 ;;1 glel. (3.5)
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A set of very useful quantities are called the overlaps, which are given by

1 N
my = ", (3.6)
i=1

Geometrically m, is the cosine between vectors £# and S in N-dimensional space,
These overlaps provide a quantitative measure of the discrepancy between a given
state S of the network and the state of the network that corresponds to a given
memory £¥. An overlap may have one of the (N + 1) values: —1, (=1 + 2/N),
(=14+4/N),... (=14 2(N —1)/N), 1.

The overlap m, describes how close the state of the network is to,a given memory,
If the state coincides with the memory, or its mirror image, then the overlap m, has
its maximum absolute value of 1. On the other hand, if the state of the network is
far from a given memory, then the overlap my, 1is close to 0. Two different memories
are “orthogonal” when there is zero mutual overlap between them. Thus, memories
ex, &4 are orthogonal if m,, = 0.

Using Eqs. (3.5) and (3.6), the energy in Eq. (3.1) can be rewritten as

(3.7)

-

E:—%im'_
=1

If the overlaps with all the memories are small, then the state S has high energy. If
the,overlap with one or more memories is large, then the state S has low energy.
The dynamics of the network is determined by the updating method. We will
update one randomly chosen node i at each time step. If the value of the node
changes, then the state S of the network will change. The updating method must
ensure that the state S of the network will reach the local minima in the energy
function Eq. (3.7) corresponding to one of the p memories in Eq. (3.4). It must also
satisfy the thermodynamic requirement that the probability that the network is in
state S is proportional to exp(—E(S)/T), where E(S) is the energy in state S, and
T'1s the temperature expressed in energy units. An updating method that meets
these requirements is illustrated in Fig. 2 and described in detail in Appendix 1. In
brief, this updating method consists of first computing the change in the energy of
the network AE that would result if the value of node i were changed from S; to
—S;, which is given by
N
AE =25 Y JyS;. (3.8)

j=1#1

This change in energy AE determines the probability P(AFE) that the value of the
node should be changed. For the Glauber dynamics (described in Appendix 1) this
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At each step in the computation a node is chosen at ‘random. };I‘hen ﬁf’mar; un(iforn)1
are determined. A random number 0 < R < 1 is then chosen




_ ' =

202 Lieboviich, Arnold, Seleclor, ...

distribution. If P(AE) > R, then the value of the node remains at S;, and if
P(AE) < R, then the value of the node is changed to —S;.

3.2. Properties of Hopfield Network Relevant to Molecular Dynamics

First, we show that the energy function of the Hopfield network has stable states
corresponding to the memories, which are separated by many shallow minima cor-
responding to the spurious memories. This is analogous to the energy function of
large molecules, such as proteins, which have local minima corresponding to stable
conformational shapes separated by a range of many energy barriers with many
shallow minima [11,12,25,33,47]. Consider the change in energy of the network if
the value of node ¢ were to change from S; to S!. Since S; = %1, the change is
equivalent to inverting the value, namely

Si=-5;. (3.10)
The new overlap m), will then be
26} S;
:‘ p (3.11)
and the change in energy will be
N < N &
AE:E’—E:—? (mf—mi)-_——? (mj, —mu)(m), + my)
u=1 pu=1
P P
268, p
u=1 p=1

Since N > P, the p/N term in Eq. (3.11) is small. Thus,
AE>0 ifS; Y muél >0and
AE<0 if S Y myuel <0, (3.13)

If the state S coincides with one or more of the memories (or their mirror images)
S = ££#, and all memories are orthogonal (mutual overlaps between memories are
zero), then all overlaps except one are equal to zero, and thus AE = 2\m,| = 2
Since a change in the value of any node only increases the energy, these states are
located at the lowest point of a local energy minima, and are thus stable. However,
there also exist other states S, far from the memories, which can also satisfy AE > 0
for all ¢ in Eq. (3.13). These states are also stable. Thus, far from any one particular
memory, the energy landscape has a rough surface with many shallow minima. In
order to go from one state to another the energy of the network has to rise over
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many intermediate barriers to reach a globally stable state. This property is called
ultrametricity.

The dynamics of the Hopfield network depends on two components: a deter-
minisbic function of the values of the nodes and their connection strengths, and a
giochastic function. This is analogous to the deterministic forces between the atoms
and the stochastic forces due to thermal energy in a molecule. The switching of the
network from one state to another can be analyzed by a Markov processes where a
{ransition probability matrix describes the probability per time step of a jump from
state S to S’. The details of this dynamic analysis are described in Appendix 1.

The dynamics of the Hopfield network has different qualitative properties, called
phases, depending on the number of nodes, the number of stored memories, and
the temperature. These phases are analogous to the phases of proteins such as the
folded conformation, random coil, molten globule, or unfolded conformation [41].

The dynamics of the network depends on the number of nodes. When the
number of nodes N is finite, the state of the network evolves so that after long times
the probability that the network is in state S is proportional to exp(—E(S)/T),
where E(S) is the energy in state S. This is described in detail in Appendix 1.
As the number of nodes N is increased, the time for the network to visit all the
states also increases. This is not only because the number of states is larger, but also
because the energy barriers between the memories increases with increasing N. The
height of the energy barriers between the memories is approximately proportionally
to the number of nodes N. This can be inferred from Eq. (3.7). When the state
of the network is far from all the memories, all the overlaps m, are approximately
0, and the energy of the network has its maximal value approximately equal to
0. When the state of the network is at one memory, the overlap of that memory
my = 1, and if the other memories are orthogonal, their overlaps m, = 0, and the
energy of the network is near its minimal value approximately equal to —N, /2. Thus,
the height of the energy barriers between the memories is approximately equal to
-N/2.

The dynamics of the network depends dramatically on the temperature. We
consider the case where the network has a very large number of nodes N. At
high temperatures, the network will have enough energy to cross over the energy
barriers into all the states corresponding to all the memories. Thus, as the state
of the network evolves in time, it will eventually pass through the states of all
the memories. This behavior is called ergodic. However, at low temperatures, the
network will not have enough energy to cross over the energy barriers into all the
states during a long time, and hence its behavior is nonergodic. Thus, there s a
critical temperature at which the dynamics of the network passes through a phase
transition between ergodic and nonergodic dynamics. At even lower temperatures,
there are additional phase transitions as the state of the network is increasingly
trapped into smaller fractions of all the possible states. At very low temperatures
the state of the network may only be able to reach the nearest local minima among
the spurious states that arise from the interactions of the memories.
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The probability that the state of the network is within the domain of a given
memory and has a given energy between E and E + AFE is proportional to the
product of the Boltzmann factor exp(—FE(S)/T) and the number of states of the :
network within the domain of this memory and within this energy interval. This is
analogous to the fact that the probability to find a molecule in a given conformation
with a given free energy depends both on the energy of that conformation and its
entropy. The Boltzmann factor decreases with increasing energy. The number
of states increases with increasing energy. This is because as the energy increases
there are more nodes that have values that are not equal to the value of the memory
and thus there is a larger number of such combinations that have the same energy
(Appendix 3). At low temperature, the energy dependence of the Boltzmann factor
dominates, and the probability that the network has a given energy decreases with
increasing energy. At high temperature, the energy dependence of the Boltzmann
factor is less strong, the factor due to the number of states dominates, and the
probability increases with increasing energy.

If the energy landscape has separate, deep, well defined minima then we can
identify several different conformational states. This is analogous to proteins with
well defined, stable structures and the distribution of times spent in each state is
the sum of exponential terms. If the energy landscape has many, shallow min-
ima, then we cannot identify unique structures. This is analogous to proteins with
many conformational substates and the distribution of times spent in each state is
nonexponential.

3.3. Computing Molecular Dynamics Using a Hopfield Network

Our goal is to formulate a network with the dynamics corresponding to the dynamics
of a molecule switching between different conformational states. First, we must
encode the spatial structure of the molecule into the network. Second, the energy
landscape of the network must be constructed so that it resembles that of the
molecule. We will do this by encoding the stable states of the molecule as the
memories £,

First, we encode the spatial structure of the molecule in the values of the nodes of
the network. Structurally similar conformations of the molecule should correspond
to states of the network that are close to each other, and dissimilar conformations
of the molecule should correspond to states of the network that are far from each
other. Here we describe one such encoding that is particularly useful for a molecule
consisting of a linear string of connected units, for example, a string of amino acid
residues in a protein. The backbone of the molecule will be a curve in 3-dimensional
space

X(s) = (X1(s), Xa(s), X3(s)). (3.14)

The distance from the beginning of the chain is given by the variable s, where
0<s<L,and L is the length of the chain. The origin of the coordinate system is
assumed to coincide with the center of mass of the molecule.
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We now define a function F(s') on the interval 0 < &' < 3L, to represent the
gtructure of the molecule:

F(s'y = X1(s") 0<s'<L
F(s')= Xy(s' — L) L<s <2L (3.15)
F(s') = Xa(s' —2L) 2L <s' <3L

We distribute the nodes of our network uniformly along the interval [0,3 L] and
assign a value to each node of —1 or +1 depending on the sign of the function F(s')
at this point, namely

S; = sign(F(s")). (3.16)

The number of nodes of the neural network may be much smaller than the
number of amino residues in the protein if the position of the backbone varies
smoothly in space. If the dynamics and biologically important features depend
more on the overall shape of the structure, rather than its fine details, than we
can smooth F(s') by expanding it into a Fourier series and retain only the leading
terms. This may significantly reduce the complexity of the description. However,
some proteins may have important properties determined by the fine details of the
local changes in conformation, and in these cases the higher order Fourier harmonics
must be retained.

Now we define the representation of the energy. We begin by determining the
memories that represent the stable conformational states of the molecule. We ex-
press the energy in terms of the overlaps between the current state S of the network,
and these memories £#. That is, we consider that a particular state of the network
consists of a combination of the memories. The physical interpretation of this rep-
resentation is that a particular structure of the molecule consists of a combination
of its stable conformational states. The values of overlaps describe the proximity
of the current state to all the different memories, that is, the relative contribution
of those stable conformational states. In this encoding the overlaps and thus the
energy changes by only a small amount when the value of one node is updated.
This important feature corresponds to the fact that over small time intervals, the
structure of the protein changes by only a small amount.

Some features of the expression for the energy in Eq. (3.7) now need to be
considered. First, the basis functions £€#, u = 1---p are not necessarily orthogonal
or uncorrelated. Second, we will assign a specific weight factor a, to each memory
to encode the relative stability of its corresponding conformational state. Third,
the energy defined by Eq. (3.7) depends on the number of nodes N. This is not a
useful feature since the number of nodes N is arbitrary and depends on the method
used to encode the spatial structure of the molecule. We remove the dependence
°n N by dividing Eq. (3.7) by N. This also ensures that the energy remains finite
n the limit of large N. Thus, using Egs. (3.1), (3.5) and (3.6), our new expression
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for the energy of a particular state S is defined as

I
1 p N 1 p v
2
B=—g7 2 2 ewtl€fsiSy=—3 3 aum], @1
u=114,j=1 u=1
t

where «, are the weights of the memories, and m,, are the overlaps between uth
memory ¥ and the current state S.

The values of weights «, are determined from the constraints that the energy
in pth memory is equal to E,, which is the known value of the depth of the energy
minima corresponding to stable conformational state p. This leads to the set of
linear equations for the determination of oy

1 P
Ep :—5 Z Ct’“lmip‘l (318)
u'=1 |

where m,,+ is the mutual overlaps between memories £, 5“’. For orthogonal mem-
ories, where my,» = 6,/ (Kronecker delta symbol), then

a, = —2E, . (3.19)

Using the values of ), from Eq. (3.17) and the memories £# we can now deter-
mine the values of the connection strengths:

1 14
pu=1

Up to now we have constructed the expression for the energy so that it includes
only the information about the stable conformational states. However, we can
expand the definition of the energy function so that it also includes information
about metastable or unstable conformational states. We can do this by adding
additional positive terms to the right hand side of Eq. (3.17) of the form

1
g Z Bym? . (3.21)

We then use a procedure analogous to Eq. (3.18) to determine the values of oy
and 3,.

The simple bilinear form of the energy that we have used determines only the
location and depth of the energy minima. An advantage of this form is its simplicity.
A disadvantage is that it is not complex enough to represent the shape of the energy
minima. However, the shape of the energy minima also depend on other parameters
of the model. Thus, we can include additional information about the energy minima
by properly adjusting those parameters. For example, the effective width of the
potential wells near the memories depends on the number of nodes of the network.
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djusting the number of nodes N, as described in Appendix 3, we adjust the
ad

i 1e potential wells to generate energy landscapes with narrow minima that

2 A Ll
1(.| {h o A ;
£ well geparated, or broad minima that intersect.

he neural network approach may be much more computationally efficient th'an
standard molecular dynamics computation. In the standard molecular dynaml'cs
£ tation the time step needs to be kept small enough to keep the changes 1n
L‘IDHmuilf'm,ilals small during the time step. In the neural network approach only the
the p;‘:\-, in the generalized objects (the overlaps) need to be kept small for each
dw;.lé;i‘;lg step. Thus, the physical time corresponding to a time step in the neural
RE ‘,‘nrl-k .cnmputatiou may be considerably longer than the physical time of th(? tin.le
|"|*e.‘t‘: in the standard molecular dynamics computation. Moreover, the updating in
21:{3] standard molecular dynamics requires .changin'g'the position 9f all th.e atoT}sl
and, in some schemes, thermalization of their velo?ltles due to the lr.lteractlon wi k
the solvent. The additional thermalization §tep is not. necessary in th‘e nleftho;'l
approach, because thermalization is inclufied m.lphc%tly in the .dyf1amlcs itself. The
energy structure of the neural network 1s a 51mp11ﬁe.:d description of the eneriy
structure of the molecule. The accuracy of the dynamics computed depends on the

accuracy of this energy approximation.

are

4. Hopfield Network Computation of Molecular Dynamics
of Cyclohexane
We illustrate the general ideas above by formulating a Hopfield network to compute

the dynamics of the small, organic molecule cyclohexane. Applying the neural
network approach to this simple molecule allows us to trace all steps of the method

and to elucidate the nature of problems that may arise.

4.1. Encoding the Spatial Structure and Energy

Cyclohexane is a 6-membered carbon ring that has two stable conformational
structures, called the twist and the chair, which are illustrated in Fig. 3. There are

Twist Chair

Fig. 3. The small carbon ring molecule cyclohexane can exist in different conformational states.
The most stable forms are the twist and chair. The energy from thermal fluctuations causes the
molecule to spontaneously switch between these conformational states.
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additional unstable conformational structures between the twists that are calle(
boats. Thermal fluctuations provide enough energy for the molecule to sponta-
neous interconvert between these siructures. Because of the many symmetries iy
this molecule, its energy function can be represented by a 2-dimension surface in 4
3-dimensional space [38], which is shown in Fig. 4. This energy surface has 2 globa]
minima, 6 local minima and 6 saddle points. The 2 chair structures correspond to
the deep, global minima at the poles, The 6 twist structures correspond to the shal-
low, local minima distributed uniformly along the equator. The 6 boal structures
correspond to the saddle points between the twists. The coordinate axes of Fig. 4
are the coefficients of the Fourier harmonics for the out of plane displacements of
the carbon atoms shown in Fig. 5. The z coordinate correspond to the coeflicient
of the cos(6ws/L) harmonic, while the z and the y coordinates correspond to the
coefficients of the cos(4ws/L) and sin(4nrs/L) harmonics respectively.

To encode the spatial structure of the molecule in the network we use the coor-
dinate 0 < 5 < L of the distance along the ring. Since the molecule is cyclic, the
positions 8 = (0 and 8 = L coincide. Thus, the nodes of the network are distributed
along the coordinate s. The structures of the chair, twist and boat can be described

Fig. 4. The energy function of cyclohexane can be presented by a two dimension surface in a
three-dimensional space. The surface shown is a schemaltic representation of the energies calculated
by Pickett and Strauss [38]. The deep minima at the poles of the energy surface correspond to the
two chair conformations. The shallow local minima along the equator correspond to the six twist
conformations. The saddle points along the equator correspond to the six boat conformations.
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Fig. 5. The method used to encode the spatial structure of cyclohexane in the values of the nodes
of the Hopfield network. The nodes of the network correspond to spatial positions around the
carbon ring. If the atoms or the bonds connecting them are below the plane, the value of the
corresponding node is —~1. If the atoms or the bonds connecting them are above the plane, the
value of the corresponding node is +1. The values of —1 and +1 are represented here as — and +.

by the displacements of the carbon atoms in the direction perpendicular to the
plane of the ring [38] as shown in Fig. 5. Since these displacements take place in
only one direction, we have the simplification that F(s’) depends only on the one
coordinate X;. These small out of plane displacements of the chairs, twists and
boats on the interval [0, L] are given by:
27s
+ cos (3 . T)

for chairs

2 .
+sin [ 2. 200 and +sin(2( 242 for twists (4.1)
Iz L 3
2
+ cos (2 ‘ QLE) and =+ cos (2 (% + g)) for boats
The value of the ith node S; = —1 if the displacement at that position s is negative,

and S; = 41 if the displacement is positive.

. We will uge the
res ta he

these e

two types of stable structures (chair and twists) as the memo-
encoded into the network. The connection strengths are determined from
mories using Eq. (3.5). The boat structures do not correspond to minima

N the anape . . .
€ energy function, and thus we will not use them as memories. (However, we
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will see below that the existence of the boat structures arises from the interactior
of the chair and twist memories.) It is only necessary to use the chair and twist
memories with the “4+” sign in Eq. (4.1), since those with the “—” sign appear au.
tomatically, because the expression for energy is invariant under the transformation
S — —S. Therefore, if € is a memory, then its mirror image —¢ has the same energy,
Thus, we use the memories corresponding to 1 chair and 3 twists. The additiona]
mirror symmetric structures are automatically included in the energy structure of

the network.

Chair  @@OO000OEOAOOOOOOOOOOVOOM

Tvist] @OOOOOODOOOOOOOOOAOOOOOOV
Twist2 @O@OOO00000OOOOOVOOOOOAOO®
Twist3 OO00OOOOO@OOOO0O00OODOO®OO

[TTr[rrrrprrror T T T
1 5 10 15 20 24

Fig. 6. Memories used to represent the structure of cyclohexane in the Hopfield network. The
values are given for the N = 24 nodes of the network for the one memory that corresponds to the

chair conformation, and for the three memories that correspond to the twist conformations.

The chair and twist memories are orthogonal and the chair and boat memories
are orthogonal and thus their overlaps are equal to 0. However, the twists among
themselves are not orthogonal, and the twists and boats are not orthogonal. These

overlaps are given by:
1 2

Miwist-twist’ = _§; Mewist-boat = 0, ig (42)

4.2. Topology and Connection Strengths

Due to the fact that twist memories are not mutually orthogonal, we have to use
the general procedure of Eq. (3.18) to calculate the weights o, of the memories.

Using Eqgs. (4.2), (3.18) and (3.19), we find that
18

Qchair = _QEchaira Upwist = ——FEiwist - (43)

11

If the highest energy barrier of the transition state is defined to be zero, then

Ecpair = —14.5 keal/mol and Eywise = —6.5 keal/mol [38].
Then, from Egs. (3.18), (4.2) and (4.3) we conclude that

8

Epoat = —Fiwist - (44)
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Note that we did not explicitly put into the network any information about the exis-
jence OF eNeEIgy of the boat structure. The boat structure arises from the interaction
of the chair and twist memories.

4.3. Updating and Dynamics

One randomly chosen node was updated at each time step of the computation.
Metropolis or Glauber dynamics were used (see Fig. 2 and Appendix 1).

The time in the numerical simulation is an integer number, denoting the total
qumber of elapsed time steps. We have to determine the relationship between the
time step of the neural network computation and the physical time in seconds. This
;s very hard to do because this relationship depends on the updating method and
on the parameters of the computation such as the number of nodes N, the number
of memories p and the temperature T'. This type of problem can sometimes be over-
come by an appropriate rescaling of the equations converting them to dimensionless
form. We were not able to accomplish such a transformation at this time.

Despite these difficulties we describe one method that we explored in order to
relate the time steps in the neural network updating method to a physical time.
The temporal behavior of the neural network may be approximated as a diffusion
process in the space of the overlaps m,. In Appendix 4 we show that for Glauber
dynamics the diffusion coefficient D for this process is

1
N2’
where 7 is the time step between two sequential updatings and N is the number of
nodes. In Appendix 5 we show that the changes in the protein structure may also
be considered a diffusion process driven by the input of energy from collisions of
the molecules in the surrounding solution. In a normalized dimensionless space this
diffusion coeflicient D is given by

D~ (4.5)

T1/2
Dre———
4/32onul/?
where [ is a characteristic length, o is the cross section of the interactions between

the protein and the solvent molecules, n is the particle density of the solvent, and u

is the mass of the solvent molecules. Equating D in Egs. (4.5) and (4.6) we derive
an estimate for 7:

(4.6)

1 2 1/2
. %4\/51 onj

1% B NeTiT (4.1
m_ll"r?r "-}'t'lullex.ane in 15;0|VE'51'1L CSs al,., the arh.-m]ute t.e?'l'lpemt.u're 200 K, I = 3 -
i |f,|.:.n‘ cr = .{: ](]: .m", b= 10%8 m”"', po= 1261072 kg: ’(No{,e that
”01Ls;;-,-l::wm'l”re in Eq. (4.7) is in energy lluuta:, and needs to be [.]l\-fldcd by the
?.9-1()!':—12 C(l:l!:il‘..i?,]]l to be expressed in °K.) From Ij}q‘ (4.6) we hnd. that D =

8. For our network with N = 24 nodes we find from Eq. (4.7) that
22107135, (4.8)
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4.4. Numerical Details and Computer Program

The network had N = 24 nodes. At each time step one node was chosen at randor,
and its value updated. The value of the node was multiplied by —1, and they
the new values of the overlaps and the energy were computed. The probability P
that this new value should be accepted was determined by Metropolis or Glaube,
dynamics (Appendix 1). A random number 0 < R < 1 was chosen from a unifory,
distribution. If p < R, then the new value of the node was retained, otherwise jt
reverted back to its original value.

To analyze the time evolution of the network, we determined the structure that
best corresponds to a given state of the network by computing the absolute value of
the overlaps with respect to the 1 chair and 3 twist memories. The memory with the
largest absolute value of the overlap then defined the structural state of the network,
For example, if the overlap with one of the twists was the largest overlap, then the
state was denoted as being that “twist” structure, although at many times it diq
not coincide exactly with the memory trace of that twist. Thus, the dwell time i
the “twist” structure includes wandering between many slightly different twist-like
states. The same may be said about the chair “state”. This definition of state is the
same as the operational definition of conformational state experimentally measured
by NMR, X-ray diffraction, light absorption, fluorescence and other techniques,
where a measured conformational state includes the interconversions between very
similar conformational substates.

To perform the computation we used dimensionless variables of energy and tem-
perature. In cyclohexane, the lowest value of the energy, which corresponds to a
chair structure, is 14.5 kcal/mol below the highest value of the energy, which corre-
sponds to an unstable transition state [38]. The dimensionless energy function was
equal to the energy divided by 14.5 kcal/mol. Thus, the dimensionless energy had
a maximum value of 0 and a minimum value of —1. The dimensionless temperature
was equal to the absolute temperature in °K divided by [(14.5 kcal/mol)/R], where
R is the gas constant. Thus, the value of the dimensionless temperature T = 1,
corresponds to a temperature of 7300 °K.

The computer program was written in standard ANSI C-language. This allowed
us to use the sophisticated user-friendly interface of Think C 5.0 on a Macintosh
[Ifx to debug the program, before transporting it to faster computers like the Silicon
Graphics TRIS workstation and Convex supercomputer. The computational results
were stored in ASCII files, transferred to the Macintosh IIfx through FTP (File
Transfer Protocol), and analyzed and graphed using Igor Software (WaveMetrics
Inc.).

Typical computational times on the IRIS to complete 10000 switches between
the twist and chair conformations ranged from minutes at high temperatures, to
hours at low temperatures. The computational time depended most strongly of
temperature and less strongly on the other parameters, such as the number of nodes.
The computational time increased exponentially with decreasing temperature. We
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stlldied some ways that the computation at low temperature might be speeded up
cOnsiderably by eliminating many of the iterations during which the state of the
network does not change.
Some aspects of the coding were important in computational efficiency. We used
integer or long integer representations instead of float or double precision where
ossible. We also precalculated tables of all possible values for certain variables,
guch as the overlaps. This allowed us to avoid recalculations at every time step. The
change of an overlap during one time step is equivalent to a shift by one position
in the array of possible overlap values. The dwell time distributions of the twist
and chair times were computed from combined histograms of different bin width so
that bins are narrow for short times and wide for long times. The method is very
cfficient and accurate at providing the dwell time distribution over the largest range
of dwell times (Liebovitch et al., in preparation).

4.5. Resulls

First we describe some features of the energy function computed by the neural
network. The structure and energies of the chair and twist conformations were
used in formulating the network. The structure and energy of the boat conformation
was then computed by the network. We found that the network predicted that the
energy of the boat conformation is equal to —4.8 kcal/mol, which is similar to the
value —6.0 kcal/mol given by Pickett and Strauss [38]. We emphasize that we did
not explicitly put into the network any information about the boat conformation.
Nonetheless, the network contains the structure of the boat conformation and it
has approximately the correct energy value. The boat conformation arises out of
the interactions of the input chair and twist memories. A new property, especially
a global property, that arises from such local interactions is called an emergent
property. The boat conformation is an emergent property of the network. In some
sense, the few memories chosen to formulate the network have captured the natural
form of the molecule. Thus, the network reproduces additional properties of the
molecule that may appear distinct to us but are actually emergent properties of the
stable conformational states of the molecule.

The energy of the network evolves in time. We computed the number of times
t-h.r.‘ network has each energy value. The functional form of this distribution changes
With temperature. This distribution provides a useful test of our computer program.
As described in Appendix 2, this distribution can be determined analytically for a
"etwork with one memory. As shown in Fig. 7, the distribution computed numeri-
[:"'”)' from the network simulation closely malches the analytical relationship. This
Otespondence increases our confidence in the computer code.

Pﬂ&::.;]:ir .disl,ril'nut-ion we ca.‘n‘ohserve the qualit:l‘ti?m .C|l:tllgﬁ n‘f the |.Jehavior when
t"illlr.]t.i(_,;]I-‘l Ol.lgf]-l a cnlzrt.am Cl'rII,lC-ZLI I.cn‘1|.mra.l.|lrr,'. Il.us ’|s a ma[.uft-!s[‘a!.mu l.':fr";. pl’mse
i !\ppr-m]lili r:, lrll1ll.{-‘. .s“ysi;mn, Th.e qua.ntl!,atwe .d%c ription of this phenomena is given

“Ndix 2. The time spent in a conformational state depends on both the depth
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¢ the energy well and the density of states within the well. At low temperatures
nl ) molecule spends most of its time in the conformational state corresponding to
h:‘: deepest potential well. However, at sufficiently high temperatures, the molecule
‘;pm,.is most of its time in the conformational state with the largest density of
;"h_qf.iiLeS- Thus, at higher temperatures, the structures corresponding to shallow,
I oad wells are more important than structures corresponding to narrow, deep wells.
When the depth of potential wells are kept constant, at a given number of
[memories, the relative number of states belonging to an energy minima decreases
with increasing N (Appendix 3). This makes it less probable for a system to be
ped in any one valley. Thus, the critical temperature needed to ensure that

br

trap . 9 [
the system visits all valleys decreases. The critical temperature scales in inverse

proportion to the number of nodes N. We confirmed this expectation by simulations
of networks with different numbers of nodes N.

The time evolution of the energy, conformational state, and overlaps of the
cyclohexane network simulations are shown in Fig. 8. The conformational state is
defined according to which memory has a maximum overlap. Note that this does
not distinguish between the three distinct twist conformations, so that there are
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Fig, 8. A

small sample of the time evolution of the properties of the Hopfield network represen-

tatj
'on of cyclohexane. The energy, state and overlaps of the network are shown as a function of

time,
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transitions, where the molecule jumps from one twist to another twist without firgy
passing through the chair conformation. Such a transition can be seen near ¢ = 4
At the low temperature used to compute Fig. 8, the molecule spends most of it;
time in the chair configuration and only small part of it in the higher energy twig
and the highest energy transition states.

The distribution of dwell times spent in the twist and chair conformations ap,
illustrated in Fig. 9 for 219°K (top) and 292°K (bottom). These temperatureg
correspond to 7' = 0.03 and T=0.04 in dimensionless temperature units. Thg
dwell time distribution of the twist conformation is approximately a power law g,
stretched exponential. The dwell time distribution of the chair has two regions:
steep decay at short times (that is possibly a power law ) and a single exponentig)
at longer times. The dwell time distributions of cyclohexane have not yet beey
measured over a large enough range of time scales to compare to these results. The

qualitative dependence of dynamics on temperature is as expected. The average |

time spent in the more stable chair increases significantly at lower temperatures. It
is not yet clear how to determine the physical time that corresponds to each time
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Fig. 9. Distribution of the dwell times spent in the twist and chair conformations computed
from the Hopfield network representation of cyclohexane. These histograms are based on the
computation of the durations of 10000 twist and chair conformations. The distributions are
shown for temperatures T = 0.03 (219 °K) at the top, and T = 0.04 (292 °K) at the bottom.
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gtep of the neural network computation. Using the method described above that
equates the thermal component of the neural network with the energy flux imparted
py collisions of solvent molecules, we find that the time scale for the chair to twist
transition predicted by the neural network is approximately 10* faster than that
found from the NMR. measurements [3]. It is not clear whether this means the
peural network computation is in serious error or merely that we do not yet know
how to scale the time steps appropriately to physical time.

5. Discussion

Our motivation for studying protein dynamics is not the “protein folding problem,”
that is, to predict the spatial structure and folding pathways from the primary se-
quence of amino acid residues. We are interested in how a protein switches from
one stable conformational state to another. In particular, we want to understand
how the motions inside a cell membrane ion channel protein causes it to switch
between conformational states that are open or closed to the passage of ions. Using
the patch clamp technique we can measure the sequence of times that an individual
channel molecule spends in each state [31,32]. We want to understand the infor-
mation about protein structure and dynamics that is conveyed to us by this data.
This was the motivation for computing the dwell time distributions of cyclohexane.
Interestingly, the forms of the dwell time distributions shown in Fig. 9 are the forms
most commonly seen in the patch clamp data. These forms include a power law or
a stretched exponential form over all time scales, or power law behavior at short
times and single exponential behavior at long times [14,28,29,31,32,45].

Neural networks may prove useful in thinking about protein dynamics. The neu-
ral network representation suggests that we may have placed too much emphasis
on the structure of the most stable conformational states. Forces between nearby
atoms are stronger than forces between distant atoms. Hence, highly ordered struc-
tures form in small regions of the network. Each of these small regions may have
different and conflicting local structures. Thus, while many nodes may have values
corresponding to one stable conformational state, there will be other nodes that
have values corresponding to other stable conformational states. In principle, we
could enumerate all possible combinations of the values of all the nodes, and call
them “states”. However, this it not a useful way to think about what is happening.
A more useful interpretation is to think of a protein as being approximately in one
state (corresponding to one memory), although some of its parts may be in other
conflicting states (corresponding to other memories).

An ion channel is open when most of the nodes of the corresponding network
have values corresponding to the open conformational state. Thermal fluctuations
thange some nodes into the closed state. Local interactions between nodes then form
Small regions that are locally in the closed configuration. These small closed regions
conflict with their surrounding locally open regions. The structure of the channel
Protein ig always bulging out into the wrong states in local regions. As time goes
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by, more and more local regions will change into the closed conformational state
The nonlinear local interactions then latches up the channel protein structure ing,
its new conformational state.

Neural networks may also prove useful in computing protein dynamics. P
tein motions are now calculated by evaluating the force on each atom, updatip
its position, and then repeating this procedure many times [25,33]. This methog
is inefficient because the nature of the protein is not intrinsically contained in the
method. The method is constantly fighting the protein, keeping the steps sma))
so that the forces do not change much over the distances that the atoms move iy
each time step. However, the properties of a neural network (such as its energy
structure) is similar to that of a protein. Thus, the neural network forms a naturg)
encoding of the protein. Encoding a few essential features of the protein as the
memories of neural network may thus reproduce many additional, emergent prop-
erties of the protein. We showed above that the memories of the twist and chaiy
conformational states of cyclohexane were sufficient to generate the existence of the
boat conformation and even approximately reproduce the value of its energy.

The evolution of the neural network is limited by the roughness of the energy
landscape. Motions within local regions on this landscape can be accurately ac-
complished by the neural network in one time step, while the F = ma molecular
dynamics might take a very large number of small steps to integrate the positions
of the atoms over physical space. The neural network encodes only some of the
information about the protein. This coarseness means that the accuracy of the
computed dynamics is limited. It also means that if the neural network contains
the essential features of the protein, then the dynamics of these features can be
computed very efficiently. The cyclohexane calculation was an important first step
that was useful in illustrating and resolving some of the issues involved in this new
method. However, in order to fully test the efficiency of this new method for large
molecules, it will be necessary to use it to compute more complex systems, such as
the gating of ionic channels or protein folding, and compare those results to that
obtained from other methods.

The purpose of this paper is to present a beginning to formulating neural net-
works with the properties of given molecules so that the dynamics of the molecule
can be computed from the dynamics of the corresponding neural network. We briefly
described methods of encoding the spatial structure of the molecule into the net-
work, appropriate types of neural networks and methods of updating. We described
in detail the properties of the Hopfield network and its use to compute the twist to
chair transitions of cyclohexane. We have not presented a finished method. That
would be too ambitious an undertaking for one paper. Rather, we have presented a
review of the possibilities and illustrated them with a specific example in order to
clarify the questions that need to be answered and to explicitly state the problems
that need to be solved. The best method of encoding the spatial structure, the best
type of neural network to use and the best updating scheme to use remain to be

determined. Perhaps the most difficult questions are: (1) How much information

g
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about the molecule needs to be encoded and how much will arise as an emergent
property of the network, and (2) What is the relationship between the time step of
the neural network computation and physical time in seconds?

6. Conclusions

Neural networks are a new type of model which are useful in studying systems with
many interacting pieces. Proteins have many of the properties of neural networks.
Thus, neural networks may serve as a useful paradigm in thinking about molecular
structure and may lead to an efficient method of computing molecular dynamics.
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APPENDIX 1
Dynamics of the Evolution of Probabilistic Networks

The evolution of a probabilistic network can be described by its time dependent
probability density function p(S), where S is the state of the network at time i.
The changing value of this function in time is determined by an equation, called
the master equation (see, for example, [46]). For the discrete time steps 1,...,n,
n+1,... where p*(S) is the probability density function at the nth time step, the
master equation has the form

pHU(S) —p(S) = D W(SIS)p"(S) - W(S'IS)p"(S), (AL1)

S'£8

where W(S|S’) is the probability of a jump from the state S’ to S during one time
step.

If a system is finite and not degenerate in some sense [16], the probability den-
sity function at long times approaches a unique final equilibrium distribution. In
physical systems this is distribution is the Gibbs-Boltzmann distribution, which has

59)),

= const - ex —
p ns p( T

the form
(A1.2)
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where T' is temperature measured in energy units. In order to reach this distriby,.
tion, and in order to meet some other physical requirements, the Markov transitioy,
matrix W should satisfy the condition of detailed balance condition with the fina]
distribution (A1.2), [46] namely:

W(S|S")p(S") = W(S'|S)p(S) (AL3)
Substituting (A1.2) into (A1.3) we obtain
W(S|S") = W(S'|S) exp <_ %) , (Ala)

where AF is the change of energy for the process § — §'.

In the stochastic dynamics of one particular system the energy is not necessarily
a decreasing function of time because of thermal fluctuations. We now use the prob-
ability distribution p(S) to describe the evolution of an ensemble of these systems,
rather than of one particular system. To characterize the properties of an ensemble
of systems, we use the free energy F which is given by the relation:

F=(E-TS)= Y p(S)IE(S) + T In(p(S)) (A15)
]
Here (S) is the dimensionless entropy of a distribution.

The relations (A1.1) and (A1.4) imply that the free energy is a nonincreasing
function of time.

An infinite number of possible updating methods exist that satisfy (A1.4). The
choice between them is dictated by practical considerations. The most common
updating method for computer simulations is asynchronous updating where only
one node at each time step is considered for updating. This updating method
avoids problems, such as closed cycles of length 2, that are common in synchronous
updating methods where all the nodes are updated at the same time [2,9].

In the asynchronous updating method, where the value of only one node ¢ is
considered for updating at each time step, the new state of the network S’ can
differ from its previous state only in the value of that one node, and thus all the
other W(8'|S) are equal to zero. The node i to be updated can be chosen in a fixed
sequence, randomly, or randomly from the nodes which have not been updated in
a current updating cycle of the length N. For our purpose the random updating
seems to be the most appropriate because it resembles the physical events where
random collisions of the solvent molecules into the protein add energy at a local
point that changes the conformation of the protein.

Different functional forms of W(S/|S) are possible. The two most commonly
used are the Metropolis [36] form:

i, for AE <0
W(s'|s) = ( AE
exp | — T

(A1.6)

), for AE >0
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and the Glauber [17] form:

W(S'|S) = -;-(1 stz (%TE)) (ALT)

More precisely, (A1.7) gives the element of the W matrix multiplied by N, since
their is probability (1/N) to pick an arbitrary node for updating. It can be shown
;hat both (A1.6) and (A1.7) satisfy the requirement (A1.4).

The Metropolis form (A1.6) is a fast algorithm that is favored in many in
sumerical simulations. On the other hand, the Glauber form (A1.7) is favored
in theoretical analysis because of the useful property of the tanh function that
tanh(Sz) = S - tanh(z) for § = 0, +1. Note also, that the Glauber form in thermal
equilibrium (A1.2) is equivalent to assigning the value 1 to a node with a probability

o= (e (42))" i

where AE = E(S; = 1) — E(S; = —1). This probability is independent of the
previous value of the node. The updating method (A1.8) is the equilibrium version
of Glauber dynamics. It is used in the Boltzmann machine network [1,34].

APPENDIX 2
Dependence of the Form of the Energy Distribution on Temperature

We consider here a neural network with one memory. A more general description
is given in Refs. [2,9].

If the state S and the memory £ have Nt nodes with the same values and N~
nodes with opposite values, then from (3.6):

* N
N*4+N- =N, m:2NT—1, N+:%(1+m), N =T (1-m) (A21)

The energy, calculated from the overlap m of the one memory is

E = —%amz.

(A2.2)

The probability for a system to have energy E is proportional to the product
of 2 components: (1) the Boltzmann probability to occupy a state with this energy
and (2) the number of possible realizations of the state with this energy. According
to (A2.1, A2.2) the energy depends only on m, which can be expressed using N't.
The number of possible realizations with the given energy E may be defined as the
number of states with given value N1, that is

N
T NH(N - N

oal (A2.3)
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where C]]\,V+ is the number of combinations of N things taken Nt at a time. Fop derive
the probability for the state of the network to have the energy E, we find that simpl
+ E will y
p(E(m(N71))) = const - CN exp (— T) . (A2.4) yields
Figure 7 shows the excellent agreement between the analytical form (A2.4) and the braiy
numerical results from the computer simulation of the network. desc}:
APPENDIX 3 patte
Geometrical Properties of an N-dimensional Cube
The values of the components of the state S of the network can be represented by
the coordinates of the vertices of an N-dimensional cube [—1, 1]V. FEach vertex
corresponds to one state, and the total number of states equals 2"V. Each memory Note
1s responsible for one term in the energy (A2.2) and for a corresponding potential V
well on the energy surface. We define a state to be in the domain of a memory if .
the absolute value of its overlap m, with this uth memory is greater than a certain grvey
value mg:
Imu] > mo (A3.1) Here
The number of states of the network, where there are N* matches between the the ¢
the values of the nodes and the values of their corresponding memory (Si =¢&)is time
given by (A2.3). Therefore, using (A2.1) we find that the probability p(mng) that 3
the condition (A3.1) is satisfied is given by node
pimoe)=2"" > c¥', N} = %(1 + my). (A3.2) the
N+>NF

[
| —

Thus, (A3.2) shows that p(mo) depends on N. In the limit of large N, the
probability p(mg) decreases approximately exponentially with increasing N.

Note that while the relative number of states in the vicinity (Jm,| > mq) of
the pth memory trace decreases with increasing N, the absolute number of states
in the domain of this memory increases. The angle ¢ between two adjacent states
decreases according to the relationship:

2
¢ = arccos (1 - N) & ﬁ (A3.3)

The number of nodes N also determines the variety of possible directions to
leave a potential valley. In terms of proteins, that may mean that the number of
states near a stable conformational state may therefore depend on the size of a
protein and its number of important degrees of freedom.

The
n a
upd

APPENDIX 4 Sul

Diffusion Coefficient of the Probability Density Function in the
Space of the Overlaps

We now show, that for large numbers of nodes N, the evolution of the state of the On
network can be considered as a diffusion process in the space of overlaps. We will
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derive the expression for the diffusion coefficient for the Glauber dynamics case. For
simplicity we will analyze the case where the network has only one memory. We
will use a memory of the form € = (1, 1,... ,1). A single memory of another form,
yields exactly the same result, because we can rotate the N-dimensional space to
transform that second memory into the form of the first memory. A more detailed
description for several memories is given in Ref. [9].

First we note, that with number of nodes N, the overlap m with a single memory
pattern can have only a discrete number of (N + 1) values given by

m=-1, —1+¢,...,L €=+ (A4.1)
Note, that changing the value of one node changes the value of m by +¢.
We now consider the probability p,, that the overlap of the network has the value
m. The Markov equation for the evolution of this probability density function is
given by
Pt = (P"P4)m-c + (P"P0)m + (P"P=)mte - (A4.2)

Here p4, po and p_ are respectively the probabilities to increase, keep and decrease
the overlap by € per one time step, and n stands for the total number of elapsed
time steps.

We now evaluate p,, po and p._. as functions of the overlap m. If one particular
node S; is chosen, then in Glauber dynamics (A1.7, 3.12) the probability to keep
the value of the node unchanged is given by

—;—(l—tanh (%)) - %(1—tanh (“J:,"f)) - %(1—5.- tanh (%’%)) . (A43)

The increase in m takes place when we change the value of the node, which was
in a state S; = —1. The probability that this is the node that we will choose for
updating is equal to N~ /N. Thus, using (A2.1) we obtain:

o= 222 (1t (22)) = €52 (1 (22))

p-= N%% (1 ~ tanh (%)) = Z"’) (1 _ tanh (%)) )

Po=1-py—p_

Substituting this into (A4.2), we find that

(" = ") = (PP )me = (0" P4 ) + (0" me = (PP )rm -

On the left hand side we have the time difference of a value, and on the right hand
side there are two “space” differences. We now make a Taylor expansion of both
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sides. The left hand side we expand in terms of the powers of the time step 7. The
right hand side we expand in terms of the powers of the “space” step ¢:

Assuming that ¢ is small and neglecting high order terms:

- o 57) ) (0 ()

(A4.5)

k k

P

k=1

k

D
©

8‘9— o(p- + (~1)*p1)]

°’I
a~|m

This expression has the form of the Fokker-Planck equation [46]. Note that the
coefficient under the derivative in the second term at the right hand side is always
positive and is greater than (1 — |m|) for m in [—1, 1]. Therefore, the diffusion
coefficient is always positive and of order of magnitude

or, recalling (A4.1):

W2’ = DNZ - (A46)

APPENDIX 5
Diffusion Coefficient of the Evolution of the Physical Structure

We can relate the time step in the neural network simulation to the physical time
by equating the diffusion coefficient of the changing state of the neural network in
the previous section with the diffusion coefficient based a physical description of
the thermal fluctuations in the molecule. Thus, in this section we seek an estimate
of the diffusion coefficient of the changes in structure due to the thermal energy
supplied to the molecule by collisions with the solvent molecules. For simplicity,
and to give us an insight into the method itself, we use the highly simplified case of
one variable.

The equation of motion for one degree of freedom of a thermally fluctuating
molecule can be written in the Langevin form [46]:

Mz +vyz+ %—Z = fr(t) (A5.1)

Here M is the effective mass of a given degree of freedom, ¥ is the attenuation

coeflicient, U is the potential function, z is the space coordinate, f(t) is the random
Langevin force. The dots above the variable z denote time derivatives.

When the surrounding media which causes thermal fluctuations is dense enough,

then the first inertial term in (A5.1) is much smaller than the second dissipative
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term. Thus, we neglect the first inertial term, and consider the regime dominated
by spatial diffusion [18]. We also replace the space variable z by the dimensionless
variable m: -

where ! is a length characterizing the distance between different stable conforma-
tions. The variable m is similar to the dimensionless overlap in the network model.
The Langevin equation (A5.1) can now be rewritten as:

. ou .
m= =yl o+l () (A5.3)

If fL(t) is 6-correlated stochastic noise with intensity F,
(fL®)fo(t)) = Fo(t - t'), (A5.4)

then the expression (A5.3) is equivalent to the Fokker-Planck equation [46] for the
probability density function p(m):

oU  Fi? 8p
s -1 i Rl 48 Ab.5
=i om (p(?m g 2y Bm) ( )
The stationary solution of this equation is
= const - exp [ — 2—‘rU (A5.6)
p - p FIz ) N

which should be equal to the Boltzmann distribution p = const - exp(—U(z)/T).
Equating these two expressions we obtain

_I’F

= A5,
= (A5.7)

This relation between v and F shows how the friction arises from thermal collisions.
It is connected with the Einstein relation for diffusion and mobility, and it is also a
consequence of fluctuation-dissipative theorem. Substituting (A5.7) into (A5.5),

2T? § 1 0U  8p
)= ——— (T 'p— + — ] . .8

P= T om (T Pom t am) (A5.8)
From this diffusion equation we define the diffusion coefficient D,

2
D= % (A5.9)

In order to estimate the value of D we must know the value F of the intensity of the
random force. The Langevin force (A5.4) is the result of frequent random collisions
between our molecule and the molecules of the solvent. The average absolute value
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of the force experienced by the fluctuating molecule due to one collision is equal to
the change of momentum of a molecule of the solvent:

) (A5.10)
9
where p is the mass of the solvent molecule, v, is the component of thermal velocity
for a p-molecule in the direction of collision and ¥ is the average duration of each
collisions. The average value (a) = 0. The total random force is the sum of all the
forces from the random collisions. For an impulse of this kind [40] the correlation
function is given by

Y(t) = ni(a?)V - exp (— %) , (A5.11)

where n; is the frequency of collisions. For short correlation times ¥, we approximate
the exponential function by a & function of ¢ with the same integral. The coefficient
F of this é-function is given by

F =8nyu%?. (A5.12)

Using the equality (see, for example [27]) pv?2/2 = T/2, ny ~ vno ~ (3T/p)'/*no,
where v is the thermal velocity, n is particle density of the solvent, and ¢ is cross
section of interaction between our molecule and molecules of the solvent, T is the
temperature measured in energy units, we obtain from (A5.9), (A5.12):

T1/2




