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It is known (yet often ignored) from quantum mechanical
or energetic considerations, that the threshold gain of the
quasi-static spaser depends only on the dielectric functions
of the metal and the gain material. Here, we derive this
result from the purely classical electromagnetic scattering
framework. This is of great importance, because electrody-
namic modelling is far simpler than quantum mechanical
one. The influence of the material dispersion and spaser
geometry are clearly separated; the latter influences the
threshold gain only indirectly, defining the resonant wave-
length. We show that the threshold gain has a minimum as
a function of wavelength. A variation of nanoparticle shape,
composition, or spasing mode may shift the plasmonic res-
onance to this optimal wavelength, but it cannot overcome
the material-imposed minimal gain. Furthermore, retar-
dation is included straightforwardly into our framework;
and the global spectral gain minimum persists beyond the
quasi-static limit. We illustrate this with two examples
of widely used geometries: Silver spheroids and spherical
shells embedded in and filled with gain materials.

1 Introduction

Over the last decade, many groups investigated plas-
monic devices coupled to gain materials both theoret-
ically and experimentally. The promise of plasmonics
is to defy the diffraction limit using evanescence and
local field enhancement inherent for plasmonic nano-
structures. However, those strategies are hampered by
significant Joule losses of the metals in the visible (VIS)
and near infrared (IR) range of the optical spectrum. The
combination of metals with active (gain) materials may
compensate these losses [1, 2], narrow the resonances [3]
and ultimately lead to amplification and generation of
evanescent modes [4, 5]. This, for instance, increases

the sensitivity in sensing applications [6]. Besides, the
integration of plasmonic devices on a chip requires
active elements, such as emitters, amplifiers and gener-
ators. A related field of studies is loss compensation in
metamaterials, which prevents absorption losses from
degrading all the important figures of merit [7–17].

A spaser fully nanoscopic in all three dimensions was
first suggested by Bergman and Stockman [4]. Similar
concepts were discussed by others [3, 18]. Experimen-
tal confirmation of such a spasing has been claimed
recently for metal nanoparticles using pulsed optical
pumping and high thresholds. Indeed, we show in this
contribution, that the spectral position of plasmonic res-
onances used in [19, 20] is sub-optimal and requires very
high gain. Related research areas are “plasmonic nano-
lasers”, where, however, at least one dimension is not
truly nanoscopic [21–31], and the amplification and gen-
eration of surface plasmon polaritons [1, 32–35].

A detailed theoretical analysis of spaser operation
can be found for example in [5, 36–40], and numerical
time domain analyses of active media with applications
to metamaterials were recently performed in [15, 41].
These works either describe both the plasmonic electro-
magnetic (EM) field and the gain medium (e.g., chro-
mophores or semiconductor nanocrystals) by quantum
mechanics, or use rate equations for the populations of
the chromophores’ energy levels, while treating the po-
larization and the resulting EM-fields semi-classically.
While such “first principles” approaches provide most
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detailed analyses, they are in many cases of limited trans-
parency. In contrast, purely classical electrodynamics is
far easier to interpret and, most important, gives use-
ful predictions as long as the spasing threshold is ap-
proached from below, increasing the gain level towards
the threshold value [5]. Specifically, the threshold gain
itself can be determined using classical physics. Hence,
we will apply electrodynamic analysis utilizing a negative
imaginary part of the dielectric function (or absorption
coefficient) in this work.

In typical experimental situations, one deals not with
a single or a few active chromophores or quantum dots,
but with hundreds or thousands of them. Hence, the con-
centration of active molecules, rather than their individ-
ual quantum-mechanical properties usually limits the
feasibility of the spaser. This also favors a macroscopic
approach, which was used in calculations performed re-
cently [19, 20, 42–55]. In these papers, the influence of
the nanostructures’ geometry on the spasing modes and
the generation thresholds was studied with different de-
grees of detail. Earlier considerations on these topics are
given in the papers [3, 56, 57]. Further, the interaction
of metal nano-particles with a single or multiple active
Hertzian dipole emitters was investigated in a series of
numerical studies [58–60].

In the current paper, we show that many previous cal-
culations, aiming to decrease the spasing threshold by
applying different shapes, aspect ratios or even multipo-
lar modes of spasers, can be boiled down to a very gen-
eral spasing threshold, which depends only on the ma-
terials constants as long as the spaser is small enough
to be in the electrostatic limit. For somewhat larger par-
ticles, as long as one remains in the near–field frame-
work, the threshold can only increase due to scattering
losses. (We note in passing, that geometric resonances
appear for structure sizes comparable with the wave-
length in the gain material [61], and the thresholds can
become arbitrarily low [47].) As the materials parame-
ters show dispersion, the lasing threshold shows a dis-
persion, too, with several local minima for specific wave-
length ranges and a global minimum in the deep red to
near IR for Au and Ag spasers, respectively. Changes in
shape, aspect ratios or spasing modes may only be used
to shift the spasing eigenfrequency towards those min-
ima, but not to change them in any way. Although similar
results have been derived before for the specific exam-
ple of spheroids [56], by using general energy considera-
tions [62], or by using quantum mechanics [63], it seems
that they have been widely overlooked given the large
body of publications named previously, where one tried
to improve spaser thresholds using specific nanoparticle
geometries, and modes.

We give explicit minimal values for the threshold gain
for gold and silver spasers based on experimental dielec-
tric constants. We find that the minimal gain necessary
for spasing is below 6�102 cm−1 for silver and 5�103 cm−1

for gold, both in the red to near IR wavelengths. To show
how the retardation increases the necessary gain via scat-
tering losses, we analytically consider two experimen-
tally important examples of nanorods and core-shell sys-
tems. In the VIS, the scattering losses quickly increase the
required gain to levels hardly achievable with currently
available materials. The situation is better in the IR. For
the core-shells, we find that for higher order modes the
influence of scattering losses settles in at larger structure
sizes and is less severe.

2 A simple example

Let us first consider an illustrative example, which we
subsequently generalize. The dipolar polarizability of a
small metallic rotational ellipsoid (volume V, depolariza-
tion factor L (see Supp. Info. 1), dielectric constant εM)
embedded in a gain material (dielectric constant εG ) is in
CGS units [64]:

α = (V/4π)(εM − εG )
LεM + (1 − L)εG

(1)

The denominator, which we hence denote as D, is a
complex-valued function of frequency ω (or wavelength
λ) due to the dispersion of the dielectric functions. In
case of spherical particles, L = 1/3, which leads to the
characteristic Clausius-Mossotti denominator:

3D = εM + 2εG = ε′
M(λ) + 2ε′

G (λ) + i(ε′′
M(λ) + 2ε′′

G (λ)) (2)

A minimum of |D| corresponds to a peak in polarizability,
as well as in scattering and absorption cross sections [65].
For a transparent host medium with ε′′

G = 0, the condi-
tion ε′

M(λ) + 2ε′
G (λ) = 0 defines the position of the dipo-

lar resonance, while ε′′
M > 0 limits its strength and width

[62, 64]. If an optical gain −ε′′
G > 0 is present, it compen-

sates Ohmic losses in the metal. With ε′
G = −ε′

M/2 and
simultaneously ε′′

G = −ε′′
M/2, the denominator D in (2)

vanishes, which leads to singularities in the polarizability
and in the cross-sections. This corresponds to a spasing
threshold, because a singular polarizability can amplify
an infinitely small spontaneous emission noise to a finite
field value. From the mathematical viewpoint D = 0 al-
lows solution with non-zero polarization without an ex-
ternal field. Roughly speaking, the imaginary part in (2)
defines the threshold gain, while the real part defines
the generation wavelength. Note, that post-threshold
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operation of a spaser, as well as threshold fields, are de-
termined by non-linear gain saturation [5, 51, 66]. In par-
ticular, very high fields and/or cross-sections obtained in
linear studies [43, 48, 50, 54, 55, 67, 68] are unphysical.
However in this paper, we are interested only in thresh-
old gain and wavelength, which, as for the conventional
lasers, can be deduced from a linear theory [69, 70].

In the visible, 0.2 < ε′′
Ag < 0.3 for silver, while for gold

ε′′
Au is one order of magnitude larger [71]. Thus, the gain

threshold can be estimated to be ε′′
G ∼ −ε′′

M/2 ∼ −0.1 for
spherical Ag nanoparticles in the VIS. These values can
be related to the experimentally more accessible ampli-
fication β:

β = cdyeσdye = −2kn′′
G ∼ 103cm−1 (3)

Here k = 2π/λ is the vacuum wavenumber and nG = √
εG

is the refractive index of a (non-magnetic) gain medium.
The typical value of β = 103cm−1 was obtained assuming
an emission cross-section of the dye molecules of σdye ∼
10−16cm2, and a population inversion concentration of
cdye ∼ 1019cm−3. This can be recalculated into ε′′

G by

ε′′
G = 2n′

G n′′
G ≈ −nhostβλ/2π

= −nhostcdyeσdyeλ/2π ∼ −0.0102 (4)

Here we assumed a representative value λ = 400 nm and
nhost = 1.6. This value is almost one order of magnitude
lower than what is required for the dipole-mode thresh-
old in Ag spheres, which is the weakest absorber in the
VIS among the noble metals. Some chromophores have
σdye ∼ 4 · 10−16cm2 and concentrations may be increased
up to cdye ∼ 2.5 · 1019cm−3 without aggregation, which
would result in ε′′

G ≈ −0.1. However, in practice, chro-
mophores tend to photo-bleach and degrade with time,
plasmon damping is increased in nano-structures due to
electron collisions with the boundaries [64], and part of
the chromophores’ excitations decay spontaneously into
plasmon-polaritons in the vicinity of metal features, etc.
All these parasitic effects increase the threshold gain re-
quirements further, but are beyond the scope of this ar-
ticle where we aim to find lower bounds for the spasing
gain threshold.

3 Minimal threshold for the quasi-static limit

The denominator of equation (1) (up to a constant factor)
can be rewritten in the form

D = εG + NεM (5)

with

N = L/(1 − L) (6)

in case of the dipolar resonance of rotational ellipsoids,
as was used by Smuk and Lawandy [56]. In the current
paper, however, we argue that in the quasi-static limit
the resonant denominator may be rewritten in the form
of equation (5) for any shape and any multipolar order.
For example, the l-th multipolar mode of a small (non
retarded) metallic sphere immersed in a gain medium
shows a resonant denominator (5) with (see Supp.
Info. 2)

N = l/(1 + l) (7)

while in the opposite case, a gain containing void inside
a metal requires (Supp. Info. 2)

N = (1 + l)/l (8)

Further down, we will discuss the case of a metallic shell
of thickness h, whereby the gain material is distributed
inside the core of the shell (radius a) and also outside.
The small-particle and thin shell limit leads to (Eqn.
(S.30) in Supp. Info. 6):

N = l(l + 1)
2l + 1

h
a

(9)

For the quasi-static shell of arbitrary thickness, expres-
sions (S.28) can be used. Even with particle dimers, the
shape parameter N depends only on geometry. As il-
lustrated in Supp. Info. 7, we derive for the “bright, in-
phase” quasi-static dipolar mode of two equal prolate
spheroids aligned along long semi-axis c (short semi-
axes a) with center separation R:

N = L − v
1 − L + v

, with v = 2a2c
3R3

(10)

In all these cases, N and hence the denominator (5) is
a function of the multipolar order l and the geometry
(given, for instance, by the depolarization factor L or by
the relative thickness of the metallic shell h/a).

The requirement D = 0, and the separation of the real
and imaginary parts in the Eqn. (5) yields ε′

G = −Nε′
M

and ε′′
G = −Nε′′

M, which can be rewritten into:

N(geometry, mode) = − ε′
G

ε′
M

and ε′′
G = ε′′

M

ε′
M

ε′
G (11)

Note, that typically, ε′
G > 0, ε′

M < 0, ε′′
G < 0, ε′′

M > 0,
and N > 0. The geometry of the nano-particle, and the
mode used for spasing, influence only the shape-mode
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parameter N. It can be derived analytically (examples
are given by the equations (6)-(10)), numerically, or es-
timated experimentally, using the 1st of Eqns. (11) and
the spectral position of the resonant wavelength. If N is
known, the 1st equality in (11) defines a wavelength λthr

due to the dispersion of dielectric functions ε′
M and ε′

G ,
while the 2nd one determines the threshold gain −ε′′

G > 0
at this wavelength. Alternatively, the 1st equation in (11)
can be used to find N, which can provide the resonance
at a given wavelength. Relevant N values range from 10−2

to 1, and can be obtained by continuously varying the
geometry of an arbitrary nanoparticle: for example the
aspect ratio of rods according to eq. (6), or relative shell
thickness via equation (9), or changing the multipolar or-
der l. If the shape of the metal nanoparticle (and there-
fore, N) is fixed, the resonance can still be shifted to the
desired wavelength, choosing the host material for the
active molecules with the appropriate ε′

G .
Different particle geometries and/or mode numbers

l may result in the same N values, as can be seen for
instance from the Eq. (9), and will be further illustrated
below. Structures with the same N have the same res-
onant wavelength and threshold gain values. The 2nd

equality in (11), defining the threshold gain, is indepen-
dent from any geometrical parameter or multipole order,
and depends only on the dispersion of the materials at
the resonant wavelength. The latter, of course, depends
on the geometry via the shape-mode factor N. The mini-
mal possible threshold gain can be found by minimizing
the 2nd expression (11) as a function of wavelength,
irrespectively of particle shape. Any nanoparticle shape,
or spasing mode, that has the value of N resulting in the
resonance at the wavelength of minimal gain is equally
effective.

Figure 1a shows the dependences N(λ) (dashed) and
−ε′′

G (λ) (solid) defined by the relations (11) for silver
and gold with dielectric functions from Johnson and
Christy [71] and normalized to the real part ε′

G of the
gain material. For ε′

G �= 1 the results simply rescale,
with larger ε′

G resulting in larger threshold gain and
N values, a fact that should be considered in the se-
lection of a suitable gain medium. The global minima
around 1060 nm for silver and around 750 nm for gold
can be understood in the following way: To reduce
the required gain, N should be decreased, because of
−ε′′

G = Nε′′
M. The decrease in N by shape-tuning, e.g.,

increase in the aspect ratio of nanorods (eq. (6)), or by
using thinner shells (eq. (9)), unavoidably red-shifts the
plasmon resonance because of −ε′

G = Nε′
M. However, for

metals ε′′
M increases with wavelength. This counteracts

the decrease in N and leads to a global minimum. To
elaborate on these trends, Supp. Info. 3 provides formu-

Figure 1 Universal quasi-static threshold parameters. a) Solid
curves (left scale) show the dependence of −ε′′

M/ε′
M on the wave-

length λ for Ag (black) and Au (red) with Johnson and Christy val-
ues. The threshold gain −ε′′

G can be obtained from this ratio by
multiplying it with ε′

G of the gain material. Dashed curves (right
scale) show the corresponding −1/ε′

M values, which are equal to
the normalized shape factor N/ε′

G at the threshold. Both ordinates
have logarithmic scales. b) Dependences of the threshold amplifi-
cation β on the background dielectric ε′

G for 5 local minima of the
−[ε′′

M/ε′
M](λ) curves for Ag, as color-coded in the legend.

las for a general Drude metal. The full red line in Fig.
1a predicts for example, that small Au spheres, or short
rods with the resonances in the range 500 < λ < 600 nm
used in Refs.19, 20, are expected to have thresholds that
exceed the optimal values by a factor of 6–10, and that
of Ag by a factor of 20–50. In Fig. 1b we plot the depen-
dence of the amplification β for the five local minima of
gain that can be seen in the black solid curve for Ag in
Fig. 1a. Note that data in Fig. 1 use bulk values for gold
and silver, neglecting surface induced damping. Hence,
if the wavelength of minimal necessary gain (defined by
the right expression in (11)) can be reached with several
different geometries (which all may fulfill the left equality
in (11)), the one with the smallest surface to volume ratio
should be used to minimize losses by surface damping.
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Table 1 Minimally required amplification in cm-1 and required
imaginary part of the gain dielectric constant −ε′′

G = −ε′′
thr

to reach spasing threshold, assuming ε′
G = 1

500 nm 750 nm 1060 nm 1500 nm

β
[cm−1] −ε′′

thr

β
[cm−1] −ε′′

thr

β
[cm−1] −ε′′

thr

β
[cm−1] −ε′′

thr

Ag 4.0�103 0.032 9.9�102 0.012 5.9�102 0.010 1.1�103 0.026

Au 1.6�105 1.5 5.2�103 0.062 4.3�103 0.073 4.0�103 0.095

We give the absolute numbers for the threshold gain
−ε′′

G and amplification β for four typical wavelength
ranges in 1 Around 500 nm, where small spherical gold
nanoparticles show their plasmon resonance, around
750 nm and 1060 nm where the minimally required gain
is achieved for Au and Ag, and around 1500 nm, which
is important for telecom applications. The feasibility of
such a gain under injection or continuous optical pump-
ing was put in doubt in [72, 73]. However, in the pulsed
regime the concomitant thermal problems look tolera-
ble. Indeed, with sub-ps optical pumping, the threshold
population inversion cdye ∼ 1019cm−3 can be reached al-
most without losses. Even if a significant fraction of the
electronic excitation is converted into heat during the
generation stage, the associated temperature rise 	T can
be estimated from the energy balance per unit volume
of the gain material: C pρ	T ∼ cdye�ω < 10 J cm−3, which
for a typical volumetric heat capacity C pρ ∼ 1 J cm−3K−1

results in 	T < 10 K.
Although we arrived at our conclusions using illus-

trative examples, equation (11) holds for any geometry
or multipolar order, as it represents the lowest term in
the Taylor expansion of the arbitrary resonant scatter-
ing denominator with respect to particle size (see Section
6). A similar expression was derived from general ener-
getic considerations by Wang and Shen [62], who, how-
ever, did not discuss the consequences for spaser opti-
mization. One can also show that our condition (11) co-
incides with equation (82) and Fig. 26 of the paper by
Stockman [63] in the case of weak relaxation ε′′

M << −ε′
M.

Local spectral minima in Figs. 26 and 1a (solid curves)
are the same, because εM data from [71] were used in
both cases. The representative β values from Table 1 (gth

in [63]) become similar to those in Fig. 26 after rescaling
with gth = β ∝ √

ε′
G (see Eqn. (4)) and (11). Alternatively,

one can use the Fig. 1b for comparison. For example,
the deepest minimum for Ag (magenta curve for λthr ≈
1060 nm ↔ 1.17 eV) for εd = ε′

G = 2, results in gth = β ≈
850 cm−1, in agreement with Fig. 26a. The numbers at
other wavelengths are similarly consistent.

While in [63] quasistatic quantum mechanics was
considered, our current argumentation relies only on
macroscopic electrodynamics, does not use resonant
and weak relaxation approximations and treats active
chromophores, which influence ε′′

G in the optical prob-
lem, self consistently. Both approaches require small
structures, but are valid for arbitrary shapes and mul-
tipolar orders, as long as retardation can be neglected.
Our classical framework is easily extendable to finite
sizes (see below), whereby an increase in size leads to
an increase in threshold due to radiative losses. It can be
shown, that threshold population inversion implied by
the second expression in (11) is inversely proportional
to the square of the dipole matrix element of lasing
transition, in agreement with the quasi-classical results
[18, 49].

While we assumed a dispersion-less εG in the main
text, we discuss the case of a Lorentzian gain in Supp.
Info. 4, taking into account its width and detuning be-
tween the plasmon and gain resonances. To show the
generality of our ansatz, Supp. Info. 5 elaborates on polar
dielectric crystals near a phonon-polariton line, which
can also be used as ε′

M < 0 materials around λ ≈ 10 μm
instead of metals [74–76], and we find similar results.

After these general considerations for non-retarded
systems, which are independent on particle shape and
mode order, we discuss below two specific examples in
order to illustrate the role of retardation: spheroids and
nanoshells.

4 Gain thresholds for spheroidal spasers,
including retardation

Spheroidal nanoparticles in gain materials were studied
before in the electrostatic limit [45, 56], and experimen-
tal results for aggregates of nanoparticles were simulated
with spheroids as well [77, 78]. In this section, we expand
the theoretical considerations to spheroids of finite size
where radiation damping and retardation are taken into
account. In the non-retarded case, equations (5) and (6)
hold, whereby L = Lz and L = Lx,y for the long axis in the
prolate and oblate cases, respectively, are given in Supp.
Info. 1. We consider only long wavelength resonances,
because the short wavelength resonances overlap with
the d-band absorption and are hence less suited for spas-
ing. The results for the quasistatic, non-retarded limit are
shown in Fig. 2 by black curves.

For spheroids of finite size, we use two approxi-
mations, one by Kuwata and coworkers [79] and one
by Moroz [80]. Kuwata et al. suggested the following
empirical formula for the resonance denominator of the
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Figure 2 Dipolar thresholds for prolate a) and oblate b) Ag
spheroids. Spheroids with ε1 = εAg are immersed in a gain
medium with ε2 = 2.6 + iε′′

2 . The threshold gain values: −ε′′
2 =

−ε′′
thr are shown at the left ordinate and the generation wave-

lengths at the right (as indicated by the horizontal arrows), both as
functions of the aspect ratio. Insets show the structure geometry
with the incident field oriented along the longer axes in both cases.
Black solid curves (indexed as c=0 and a=0) correspond to the
non-retarded case. Dashed curves include retardation according to
Kuwata. The approximation by Moroz yields similar results as il-
lustrated by the dotted magenta curves. The length of the largest
semi-axis (c for the prolate case in a) and a = b for the oblate case
in b) is chosen as the size parameter and is color-coded in the plots.

dipolar polarizability:

D = ε1 L + ε2(1 − L)

+ (ε2 − ε1)

(
Aε2(kaE )2 − Bε2

2(kaE )4 + i
ε

3/2
2 k3V

6π

)
;

A = 0.4865L + 1.046L2 − 0.8481L3;

B = 0.01909L + 0.1999L2 + 0.6077L3 (12)

Here aE is the semi-axis along the electric field direction
and V is the volume of the spheroid, while ε1 and ε2 refer
to the spheroid and the ambient, respectively, as shown

in the insets in Fig. 2. Moroz suggests several approxi-
mations. We choose the one implied by his equations
(36), (37), (56), which empirically correct the dynamic
depolarization factors 	 for the inhomogeneity of the
field profile inside the particle.

D = ε1 L + ε2(1 − L)

+(ε2 − ε1)

(
ε2k2V
4πaE

(0.37 + 0.63	) + i
ε

3/2
2 k3V

6π

)
;

	z = 3
4

·

⎧⎪⎨
⎪⎩

1 + e2

1 − e2
Lz + 1

(1 − 2e2)Lz + 1

;

	x,y = a
2c

·

⎧⎪⎨
⎪⎩

3
2e

ln
1 + e
1 − e

− 	z, prolate

3e−1
√

1 − e2arcsine − 	z, oblate

(13)

The dashed curves in Fig. 2 relate to equation (12)
and give the threshold gain values (left ordinates) as
a function of aspect ratio, whereby the long half axis
serves as a color-coded parameter. For the longest half
axes (c = 50 nm and a = b = 50 nm for the prolate and
oblate cases, respectively), the results according to Mo-
roz (eq. (13)) are given as dotted curves. The Kuwata
formulas give slightly larger threshold gain for prolate
spheroids (Fig. 2a), and smaller ones for the oblate case
(Fig. 2b). Nevertheless, both approximations yield sim-
ilar results, which confirms their applicability for the
considered range of sizes. The threshold gain −ε′′

thr in-
creases with the size due to radiative losses. This in-
crease is more pronounced for smaller aspect ratios
(more spherical particles), because they undergo larger
increase in volume. The retardation corrections are min-
imal for the spheroids with long semi-axes of 10 nm, but
become quite significant for 50 nm, where the approx-
imations (12) and (13) start to lose their validity. In ac-
cordance with the general prediction (equation (11) and
Fig. 1), local threshold minima are achieved at the same
wavelengths as defined by the minima of the −ε′′

Ag /ε′
Ag

ratio for the quasi-static case. For the considered ma-
terial parameters, there exists a range of optimal aspect
ratios (3.4-6.6 for the prolate and 7.1-19.8 for the oblate
spheroids) with low threshold gain 0.026 < −ε′′

thr < 0.036
within a spectral range of 727 nm < λthr < 1137 nm. The
very lowest values are reached for the aspect ratios 6
and 16.9, at a generation wavelength λthr = 1061 nm with
−ε′′

thr ≈ 0.026 for the prolate and oblate spheroids, re-
spectively, but a comparable minimum exists in the far
red at λthr = 756 nm, with −ε′′

thr ≈ 0.03 and at aspect ra-
tios of 3.6 and 7.8.
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5 Gain thresholds for finite-sized (retarded)
metallic shells with different multipolar
spasing modes

The quasi-static expression (7) shows that for a solid
spherical metal particle in a gain medium the dipole
mode l = 1 is the easiest to generate, as it requires the
lowest gain ε′′

G = −ε′′
M/2, while higher multipole thresh-

olds approach the limit ε′′
G = −ε′′

M. For the active void (eq.
(8)) the situation is reversed. The dipolar mode requires
the largest gain ε′′

G = −2ε′′
M, while higher multipoles

approach the limit ε′′
G = −ε′′

M. Metallic nano-shells which
have gain both inside and outside (see sketch in the up-
per right hand corner of Fig. 3), possess both sphere- and
void-like features, which makes their ordering of thresh-
olds worth to investigate. For the most of the remaining
section, we focus on the symmetric structures, with the
same gain material inside and outside a silver shell of ra-
dius a1 and thickness h2. A comparison with asymmetric
gain distributions, where the gain is either only in the
core, or only outside the shell will be given at the end of
this section. We will call the symmetric geometry GMG
(gain/metal/gain), the case of a gain filled shell with pas-
sive dielectric ε3 outside GMε3, and the case of a metallic
shell on a gainless core, but with gain outside a ε1MG
structure. Asymmetric structures have been discussed
before [5, 57], but largely for the quasi-static dipole case
and without global gain optimization via geometry. We
note that in the main text, we use full analytical multi-
shell Mie theory without approximations. Quasi-static
approximations can be found in Supp. Info. 6.

We will now study the multipolar thresholds of the re-
tarded GMG structures in detail. The shell is made of Ag,
(ε2 = εAg), while the active material is characterized by a
dispersionless ε1 = ε3 where ε′′

1 defines the gain strength.
The Fig. 3 shows the numerical solution of the complex-
valued equations Dl(ε′′

1, λ) = 0 where Dl is the multi-shell
Mie denominator for each multipolar order l. No approx-
imations were used, i.e., the full denominators from [81]
were employed. The left column presents the gain
thresholds −ε′′

thr, while the right column shows the cor-
responding generation wavelengths λthr. Both −ε′′

thr and
λthr functions are plotted as two-dimensional contour
plots of a1 and h2 for different multipolar modes from l
= 1 (dipole) to l = 5. We make several observations: For
quasi-static structures the threshold should depend only
on the shape, i.e., the aspect ratio h2/a1 (as illustrated
by equation (9)). While this can clearly be seen for the
higher order multipoles with l > 2 and for h2 < 10 nm
and a1 < 100 to 200 nm, it is less obvious for l = 1 and
l = 2. The reason is that significant retardation starts

Figure 3 Multipolar thresholds for metallic shells. The inset shows
the geometry of the GMG structure. A metallic shell with the di-
electric function ε2 = εAg from Johnson and Christy is immersed
into and filled with a gain medium with ε3 = ε1 = 2.6+iε1

′′. The
threshold gain values −ε1

′′ = −εthr
′′ (left column, log-color map)

and the wavelengths λthr (right) are shown as contour plots as a
function of the inner radius a1 and the shell thickness h2. Different
plots correspond to different multipolar modes from l = 1 (dipole),
to l = 5, as labeled in the panels.

very early for the low order modes: −ε′′
thr and λthr visibly

deviate from the straight lines h2/a1 = const for a1 ∼
10 to 20 nm and h2 ∼ 1 to 2 nm in case of l = 1. The re-
tardation settles in later for the higher multipoles, which
can be seen from the corrections to Eqn. (9) (see Supp.
Info. 6), which contains l in the denominator of the lead-
ing correction term. For the high order mode with l =
5, this occurs in the range a1 ∼ 150 to 200 nm and h2 ∼
10 to 20 nm. Nevertheless, the thresholds for different
multipoles behave similarly. This is especially obvious for
the higher multipoles. Increasing size ultimately makes
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thresholds higher, similarly to the case of spheroids
(Fig. 2).

The minimal possible gain is again −ε′′
thr = 0.026 near

λthr = 1061 nm, and −ε′′
thr ≈ 0.03 near λthr = 756 nm.

These numbers are independent of the multipolar in-
dex l, but are achieved for different geometries, which
depend on l. There exists an optimal aspect ratio h2/a1

for each multipolar order, for example 0.07 < h2/a1 <

0.15 for the dipole and 0.015 < h2/a1 < 0.05 for the l = 5
mode, where the threshold gain lies in the range 0.026 <

−ε′′
thr < 0.036 (blue areas in the left column of Fig. 3).
The optimal ratio h2/a1 decreases with increasing

multipolar index l, as expected from the approximation
(9), which provides N in the universal quasi-static con-
dition (11) for thin shells. In practical terms, the dipo-
lar mode has low thresholds only for very small structure
sizes where manufacturing is difficult and size-related ef-
fects (quantization, increased losses due to surface scat-
tering and quenching) will hinder experimental realiza-
tion. The different panels in Fig. 3 show, that it is not easy
to predict a priori the mode with the lowest threshold
for the given geometry. For a representative case of a1 =
100 nm, h2 = 5 nm the thresholds for increasing mode-
order are: −ε′′

thr ≈ 0.67, 0.11, 0.052, 0.032, and 0.052.
Thus, the mode with l = 4 will be “the easiest to generate”
(near λthr = 736 nm), while it will be virtually impossible
to “fire up” the dipolar mode.

An infinite gain medium may contain exponentially
growing solutions. This is known to cause non-trivial
issues in Fresnel formulas, as well as in total internal re-
flection (see [82] and refs. therein). However, these issues
do not influence the threshold gain and wavelength,
obtained from zeroes of scattering denominators, which
are related to the multipolar solutions of plasmonic
structures, even if the corresponding outgoing scattered
waves are amplified at larger distances. To illustrate
this, we compare the GMG structure studied in Fig. 3

Figure 4 Comparison of the field enhancement |E|/E0 between the
GMG (a) and GMG1 (b) structures near the generation threshold of
the l = 3 mode. In both cases, Johnson and Christy data are used
for Ag, and εG = 2.6-0.08i. a1 = 50 nm and h2 = 5 nm for both struc-
tures, and h3 = 50 nm in case of the GMG1 structure. The propaga-
tion direction and the polarization of the incident plane wave with
the amplitude E0 are indicated in panel a).

with a GMG1 structure, where a gain containing core
(a1 = 50 nm) is covered by a silver shell (h2 = 5 nm) and
by a gain-shell (h3 = 50 nm), followed by vacuum. We
find that the difference is not substantial, because the
relevant field structures are very similar near the metallic
shell. This is illustrated in Fig. 4 for the l = 3 mode.
For such a GMG structure, the enhanced field near the
metallic shell initially decays on a length scale compa-
rable to the radius of the inner core (50 nm). Figure 4b
shows that for the GMG1 structure most of the enhanced
field remains inside the 50 nm thick outer gain shell.

Numerical results for different core-shell structures
at typical wavelengths are given in Table 2. The wave-
lengths, where spasing occurs for GMG and the GMG1
structures, are very similar, with better agreement for in-
creasing multipolar number. The red-shift of the lower
mode wavelengths of the GMG structure with respect
to the GMG1 structure is due to the larger real part of

Table 2 Threshold gain −ε′′
G = −ε′′

thr and the generation wavelengths λthr [nm] for the l = 1 to 5 modes of GMG, GMG1, GM2.6,
2.6GM, and GM1 structures obtained from the numerical solution of the exact analytical multi-shell Mie theory

GMG GMG1 GM2.6 2.6MG GM1

l λthr
[nm]

-ε ″ ″ ″ ″ ″thr βthr
[cm-1]

λthr
[nm]

-ε thr βthr
[cm-1]

λthr
[nm]

-ε thr βthr
[cm-1]

λthr
[nm]

-ε thr βthr
[cm-1]

λthr
[nm]

-ε thr βthr
[cm-1]

1 1012 0.3029 11645 937.1 0.1716 7133 995.2 1.3582 51552 1016 0.3873 14813 749.8 0.2921 15159

2 727.7 0.0531 2841 717.4 0.0410 2237 727.5 0.1624 8695 727.8 0.0788 4217 584.0 0.1124 7497

3 613.3 0.0719 4565 610.8 0.0714 4554 613.3 0.1901 12072 613.3 0.1155 7336 514.2 0.1179 8937

4 550.4 0.0834 5903 549.9 0.0839 5942 550.4 0.2075 14683 550.4 0.1394 9865 473.0 0.1317 10844

5 512.7 0.0772 5870 512.6 0.0773 5877 512.7 0.1862 14146 512.7 0.1320 10026 447.2 0.1107 9642
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the dielectric function for the global background (2.6 vs.
1). The threshold gain is also remarkably similar for the
GMG and the GMG1 case. For instance, in the case of
the l = 3 mode (shown in Fig. 4), −ε′′

G = 0.0719 for GMG
and −ε′′

G = 0.0714 in case of GMG1 (see colored entries
in Table 2). In fact, the GMG1 structure shows slightly
smaller threshold than the GMG structure. This is re-
lated to 2 factors: a) Small shift of the resonant wave-
length towards locally better threshold conditions (see
Ag curve in Fig. 1a near the green arrow). b) Lower radia-
tive losses into the background with εb = 1 as compared
to εb ≈ 2.6 for the GMG case. To minimize the shift of the
resonance, next we consider a GM2.6 structure, where
only the inner core includes gain, followed by a metal-
lic shell immersed in a passive matrix with the same, but
purely real dielectric constant of ε3 = 2.6. All geometri-
cal dimensions are the same as for the GMG structure.
In this case, the l = 3 mode needs a threshold gain of
−ε′′

G = 0.1901, which is 2.64 times the gain required for
the GMG structure. The complement, a 2.6MG structure
(passive medium in the core with a metallic shell, em-
bedded in an infinitely extended gain medium) requires
−ε′′

G = 0.1155 for spasing, just 1.61 times the GMG gain.
Finally, we consider a GM1 structure, i.e., a gain core,
covered with silver and put into vacuum. In this case,
the l = 3 resonance is naturally blue-shifted due to the
smaller real part of the outside dielectric. The required
gain is now −ε′′

G = 0.1179. In fact, analyzing the expres-
sion (S.26) in Supp. Info. 6, one can show, that for a quasi-
static metallic shell with −ε′

M >> ε′
1,3 in an asymmet-

ric environment, εG,eff = ε1 + l+1
l ε3 plays the role of a di-

electric function of a compound gain material. This ob-
servation elucidates why for GM2.6 thresholds are lower
than for 2.6GM, and more so for lower multipoles. Sim-
ilar comparisons as discussed for the l = 3 mode can be
carried out for the other modes from l = 1 to 5, which
are all shown in Table 2. These results suggest, that in
the experimentally relevant case where several materials
are involved (GM1, GMG1, as well as GM2.6 and 2.6GM
structures), the threshold based on 2 materials provides
the minimal values for the multiple-materials case. This
is understandable, as the gainless materials can be con-
sidered as regions where gain was “switched off”, which
is likely to increase the threshold. In such comparisons,
one should account for the spectral shift of the reso-
nance (which changes the metal absorption), as well as
changes in radiative losses in different backgrounds for
larger structures.

The considered modes are the long-wavelength,
charge-symmetric hybrid modes of the nano-shells [83].
The short-wavelength modes have significantly higher
thresholds for nanoscale structures which we discuss

here, while for large structures with thick shells they
transform into the geometric resonances of the core,
with low thresholds, similar to a spherical micro-lasers
[47].

6 General eigenfunction expansion framework

The expansion of a scattering problem for an arbitrary
composite particle in eigenfunctions of the Helmholtz
equation is conceptually similar to the cases consid-
ered above. In most practical cases, the scattering cross-
section can be written as a multipole expansion:

σsca = a2
∞∑

l=1

(ka)4l fl∣∣Dl(εM, εG , ka, shape)
∣∣2 (14)

Here a loosely refers to the “size” of the structure, which
shape may include several geometrical parameters. For
example, an arbitrary ellipsoid is characterized by 3 axes,
while a core-shell structure or torus has 2 spatial scales,
but more complex cases obviously exist. The index l char-
acterizes the multipole order, or, for more general asym-
metric structures, the eigenfunctions of the structure. In
the latter case, the power of ka in the numerator may dif-
fer. Denominators Dl in Eqns. (14) can be chosen dimen-
sionless and their leading zero order terms are ka inde-
pendent. Higher-order ka terms describe the so-called
dynamic depolarization, radiative damping and inho-
mogeneity of polarization in the structure [80, 84]. For
complex structures, they can include additional dielec-
tric functions (for example εhost for a core-shell struc-
ture in passive host medium). The functions fl depend on
similar arguments (εM, εG, shape) but are usually inde-
pendent from ka in the leading zero order. Mie expansion
[85], or generalized Mie expansion for multi-shell struc-
tures [61, 64] have the form (14) and the size-expansions
of their denominators are studied as examples in
Supp. Info. 2 and 6.

Similarly to the equations (1)-(2), the condition Dl =
0 in (14) characterizes the generation threshold for the
lth mode. Zero denominator allows the buildup of a finite
polarization in the resonant mode from small sponta-
neous emission noise without an external field. The com-
plex equation Dl = 0 allows one to find two real num-
bers, the threshold gain level ε′′

G = ε′′
thr and the generation

wavelength λthr . Note, that the spectrum can contain sev-
eral modes corresponding to the same l because of the
ω-dependence of the dielectric functions εG and εM. One
example is the splitting of the l-resonances in a core-shell
particle [83].
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Two final remarks: First, one can ask, if one can over-
come the universal gain threshold by constructing quasi-
static ensembles of metallic nanoparticles. In Supp. Info.
7 we elaborate on a two-particle geometry and show that
the minimal gain requirement as given in Fig. 1 cannot be
circumvented. Second, we note that some authors define
the generation threshold as a gain for which the imag-
inary part of a complex eigenvalue ω of the electromag-
netic problem for the structure disappears [19]. This defi-
nition is equivalent to the condition Dl = 0 in (14), which
is used here and in some other works [50, 53], as outlined
in Supp. Info. 8.

7 Conclusions

A spaser nanoscopically confined in all 3 dimensions is
a truly nano-scale source of coherent electromagnetic
fields in the visible and near IR. The main difficulty in
its practical realization lies in metal absorption, which
necessitates high concentration of the active (lasing)
agents, e.g., fluorescent dye molecules. In this contribu-
tion, we have investigated the threshold gain necessary
for spasing and found that for the quasi-static spasers
it depends only on the materials involved. As the mate-
rials’ parameters show dispersion, the lasing threshold
shows a dispersion as well; however various spasers, uti-
lizing different nanoparticle shapes and modes, but gen-
erating on the same wavelength, have equal thresholds.
Specifically, there exists a global minimum of required
gain for each combination of materials, which, however,
does not depend on the specific shape, multipolar spas-
ing mode or even arrangements involving several parti-
cles, such as nanoparticle dimers. Geometric design and
choice of multipole order can only shift the plasmonic
resonance towards the wavelength of minimal gain. This
wavelength of lowest spasing threshold is determined by
the minimum of the metal −ε′′

M/ε′
M ratio, because the dis-

persion of this ratio is typically much larger than the dis-
persion of the real part of the gain material’s dielectric
constant. In addition, low values of the host dielectric
function ε′

G decrease threshold gain values.
These general statements follow from the classical,

macroscopic electrodynamic expressions for scattering
coefficients, without invoking quantum mechanical
arguments. Spasing threshold corresponds to the zero
of the denominator in the corresponding scattering
coefficient; this holds also for systems with retardation.
The results are illustrated by the examples of dipolar
modes of silver spheroids and multipoles of core-shell
structures for which thresholds are calculated explicitly
for a broad range of sizes. Our results show how the

retardation increases spaser thresholds due to radiative
losses. In addition, damping due to surface scattering of
the conduction electrons (not included into bulk values
of the dielectric constants used here) will increase the
gain threshold. Further, the ideal limit for the minimal
threshold (11) holds in the absence of quenching of
chromophores via energy transfer to the plasmonic
structures. It can bleach the population inversion within
about 5 nm near the metal structures [86–88], and/or
funnel the pumping energy into the undesirable, spec-
trally overlapping modes, resulting in additional losses
and detrimental mode competition. The limit (11) can
however be approached either with fs optical pumping,
or in case of multipolar modes of a moderately large
(�50-100 nm) quasi-static structures, where the relative
importance of quenching with respect to scattering
is smaller. Femtosecond pumping, if strong enough
everywhere, will invert all available chromophores, and
make the gain, defined as ε′′

G , spatially homogeneous
irrespectively of the distribution of the pumping inten-
sity and/or Purcell-enhanced relaxation rate into the
resonant and even non-resonant plasmonic modes.

As a qualitative recipe, one can suggest that: a) if the
wavelength of minimal gain can be realized with differ-
ent geometries and/or multipolar orders, the solution
with the smallest surface to volume ratio should be pre-
ferred; b) higher order modes, despite being “dark” or
“non-radiative” under normal conditions, often become
advantageous for the generation, as they allow larger
structures, where the boundary losses and quenching are
less prominent.

Minimal threshold gain values translate into dye con-
centrations close to those available with commercial
dye-doped polymers, where pulsed optical pumping is
not expected to cause thermal issues. At the same time,
the so far experimentally explored geometries and mate-
rial combinations are not always optimal. In particular,
minimal conditions for Ag and Au nanoparticles suggest
structures with substantial geometric aspect ratio, which
significantly deviate from a sphere, in order to red-shift
the plasmon resonance into the region of lower thresh-
olds. For Ag, the favorable wavelength range spans 730–
1140 nm and requires gain values of −ε′′

G ∼ 0.03 or an
amplification of β ∼ 103 cm−1 only. The values for Au are
about an order of magnitude larger.
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Supp. Info. 1. Depolarization factors for spheroids 

Let us consider ellipsoids of revolution (spheroids), rotationally symmetric about the z-axis 

and with a semi-axis length c. Two other semi-axes are a=b, which we will refer to as a. The 

semi-axis along the field polarization direction is denoted as aE. Depending on the irradiation 

geometry , orE Ea c a a= = . Such a spheroid has the volume 

 24

3
V a c

π= , (S.1) 

and the static depolarization factors L involving the eccentricity e are given by:[1] 
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 (S.2) 

The depolarization factor L should be taken along the electric field direction. 

 

Supp. Info. 2. Multipoles of spherical particles, including retardation correction 
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For illustrative purposes, let us consider the resonant denominators of the multipole expansion 

(14), including the retardation corrections up to the first meaningful order, for a sphere with 

the vacuum Mie parameter 1q ka= , a1 being sphere radius. They are obtained from the Taylor 

expansion of the classical Mie formulas [1-3] into the size parameter q. We choose the form 

of denominator most convenient for the studies of the near-threshold behavior (hence 

proportionality sign instead of equality). Subscript 1 refers to the sphere, 2 to the ambient 

medium.  
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 (S.3) 

Terms in the first row are responsible for the spectral shifts of the resonances. Their origin lies 

in the dynamic depolarization and inhomogeneity of polarization over the sphere size. Terms 

in the second row are associated with the multipole radiative losses. All corrections disappear 

for ε1=ε2. For higher multipoles the shift remains quadratic in q, while the radiative losses 

decrease as q2l+1 (as q<<1).  

Let us review the origin of the radiative losses for the dipolar mode. We omit dimensionless 

factors related to shape and ε everywhere. The energy W of the oscillating dipole d can be 

estimated from its volume V, associated field E and polarization P as:  

 2 2 2~ ~ ~ /W V E V P d V  (S.4) 

The radiated power I is [4]: 

 2 3 4 2 3 3 2~ / ~ / ~I d c d c k dω ωɺɺ  (S.5) 

Here c and k are the speed of light and wavenumber in vacuum. The radiative decay rate is the 

ratio of I/W and is of the order of 

 3~ / ~rad I W k Vγ ω  (S.6) 
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Thus, dimensionless radiative corrections to all physical quantities should be of the order of 

3 3~k V q . This is indeed the case in the expression (S.3) for the dipolar mode with l=1. 

Similar considerations can be applied to the multipoles. The Eq. (S.3) shows that the 

corresponding corrections scale as 2 1lq + , which suggests radiative damping of  

 2 1 1/3 2 1~ ~ ( )l l
rad q kVγ ω ω+ +  (S.7) 

Formulas similar to (S.3) can be found in the literature. In [5, 6], Appendix A of Ref. [7], and 

chapter 5 of ref. [8], different approximations are discussed, although apart from Ref. [6], for 

the dipolar mode only. As we are interested in the threshold, we Taylor-expand the 

denominator only, while for the studies of cross-sections far from the threshold one has to 

expand the numerator of the Mie coefficients as well. The last term in (S.7), which results in 

(S.8) below, agrees with the effective multipolar polarizability correction from Ref. [9]. 

For real dielectric functions the particle acquires an effective imaginary part of ε1 due to 

(multipole) radiation:  
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Supp. Info. 3. Optimal threshold conditions for Drude metal 

Let us consider a Drude metal with the dielectric function 

 
2

( )
p

M i

ω
ε ε

ω ω γ∞= −
+

 (S.9) 

The gain material shall be characterized by the constant dielectric function 

 G G Giε ε ε′ ′′= +  (S.10) 

For a given shape factor N, we can resolve the general conditions (11) and find the generation 

frequency and gain: 
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 (S.11) 

The second approximations refer to the case of weak damping, 2 2
pε γ ω∞ << . To find the 

minimal gain, we can either minimize the 2nd of these expressions as a function of N, or use 

the 2nd equality from (11), which for Drude metal (S.9) reads 
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ε ε
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− +

, (S.12) 

and minimize it with respect to ω. The origin of the minimum can be understood as a tradeoff 

between the two factors: in the UV the metal is not metallic enough, while in the IR the losses 

become too high. This yields a set of optimal parameters: 
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 (S.13) 

For brevity, we introduced a dimensionless parameter w characterizing the quality of plasma 

oscillations. Its value is usually high, and the last approximations in (S.13) correspond to the 

typical case w>>1. Note, that in the lowest order, changes in γ  (e.g., due to boundary losses) 

do not change minN  and minω , but linearly increase the threshold minε− .  

Let us consider the case of Ag in a polymer matrix with 2.6Gε ′ =  studied throughout this 

paper. For the Drude values of Ag we have chosen the following consensus average between 

the refs. [10-12] with the real part of the high frequency interband Lorentzian incorporated 

into ε∞  (matching in the middle of the VIS range): 

16 13 11.39 10 rad/s, 3.34 10 s , 4.4pω γ ε−
∞= × = × = . These parameters result in the following 

optimal values for silver calculated with the first (full) formulas (S.13):  

 4
min min min3.9 10 1, 0.30, 492 nm, 0.034w N λ ε ′′= × >> ≈ ≈ − ≈  (S.14) 
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These results semi-quantitatively agree with those in Table 1, which are based on the 

experimental Agε . The discrepancies are due to the deviations from the Drude behavior for 

silver. In fact, λmin is shifted towards IR for experimental εAg values, because the absorption 

of silver is anomalously low there, as compared to the Drude values. The Au data are obtained 

in a similar way from [12] and are valid above about 450 nm only. For 2.6Gε ′ =  we find: 

 
16 14 1

min min min

1.36 10 rad/s, 1.67 10 s , 9.5

698 1, 0.14, 739 nm, 0.26
p

w N

ω γ ε
λ ε

−
∞= × = × =

′′= >> ≈ ≈ − ≈
 (S.15) 
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Figure SI.1. Quasi-static threshold parameters calculated with the Johnson & Christy 
values (J&C, solid curves) and with the Drude parameters given in the text (dotted curves) 
for Ag (black) and Au (red). a) The normalized threshold gain M Mε ε′′ ′−  vs. generation 

wavelength λthr, similar to the solid curves in the Fig. 1a of the main text. The threshold 
gain Gε ′′−  can be obtained by multiplying these data with the Gε ′  of the gain material. b) 

The corresponding 1 Mε ′−  values, equal to the normalized shape factor GN ε ′  for this 

wavelength. Both ordinates have logarithmic scales.  
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These results are in good agreement with the experimental Auε  data in Table 1. The formulas 

(S.13) provide guidelines for the influence of different factors on minimal parameters. Figure 

SI.1 compares the universal quasi-static threshold parameters calculated with Johnson and 

Christy and the Drude dielectric functions. The agreement is better agreement for the shape 

factor N in Fig. SI.1b because it depends only on Mε ′ , where J&C data are in better agreement 

with Drude than for Mε ′′ . 

 

Supp. Info. 4. Generation frequency and threshold for a Lorentzian gain of finite width 

In this section, gain material shall be characterized by a Lorentzian of finite FWHM Lγ : 

 
2 2

/ 2 [( ) / 2] / 2
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 (S.16) 

With these notations 0Lε >  characterizes gain strength, and the Lorentzian profile L is 

defined such, that in the center of the line ( ) 1LL ω′′ = , and correspondingly ( ) 0G L Lε ω ε′′ = − < . 

Because now both Gε  and Mε  have a spectral dependence, the generation will not always 

take place in the center of the Lorentzian line, where Gε ′′  has its maximum, and G hε ε′ = . Our 

goal is to find the generation frequency and necessary threshold gain level Lε . The general 

threshold conditions (11) remain valid, and can be written in the form:  
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 (S.17) 

Similarly to (11), for a given shape factor N, the 1st of these conditions defines the generation 

frequency, and the 2nd defines the threshold gain Lε . In general, these equations can be 

resolved only numerically, as , ,M Mε ε δ′′ ′ , and even hε  may depend on ω. For a flat gain 
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, 0Lγ δ→ ∞ → , and we recover the simple expressions (11) and the corresponding minimal 

conditions. Moreover, for each desired generation frequency ω, one can always tune the 

particle shape such that /h MN ε ε ′= − . In this case relations (S.17) imply that 0δ = , and 

/L h M Mε ε ε ε′′ ′= − . This corresponds to the tuning of plasmonic resonance to the center of the 

emission line. The formulas again coincide with (11), and the global minimal conditions still 

hold.  

With detuning between the emission line Lω  and plasmon resonance resω , the 1st of the 

conditions (S.17) is similar to that for the laser generation frequency ω, which occurs between 

the mode of the “cold” (gain-less) resonator and gain emission line [13, 14]: 

 ( ) ( )res res L LQ Qω ω ω ω− ⋅ = − ⋅  (S.18) 

Here Q are the corresponding quality factors. For the emission line /L L LQ ω γ= , while the 

properties of the resonator mode are implicitly defined by N and the spectral behavior of 

,M Mε ε′′ ′  and, if relevant, hε . The position of the “cold” resonance resω  is given by the 

minimum of the denominator, while its FWHM resγ  corresponds to the twofold increase of 

the denominator from its minimal value at resonance: 

 
/2

0
res

res res res

h M

h M M

N

N N

ω

ω γ ω

ε ε

ε ε ε±

′+ =

′ ′′+ ≈
 (S.19) 

A Taylor expansion of the 2nd term in the last equation, assuming weak variations in other 

quantities, yields: 

 
/2

,
/ 2res res

MM res
res res

M res M

Qω ω
ω ε ωε ωγ

ε ω γ ε
′∂ ∂′′

≈ ≡ =
′ ′′∂ ∂

 (S.20) 
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We again assume the strongest variation due to Mε ′ , and / 0
res

M ω
ε ω′∂ ∂ >  (otherwise in the 

final result one should multiply resγ  by the sign[ / ]
res

M ω
ε ω′∂ ∂ ). Then the 1st of the conditions 

(S.17) can be transformed as follows: 

 

0

/
( )

/ 2

/
( )

2

res res
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L h M h M M
res

L M M M

L M res L L res
res

L M L res

N N

N N ω ω

ω

ω
ω ω ε ε ε ε ε ωδ ω ω
γ ε ε ε
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′ ′ ′− + + ∂ ∂≡ = ≈ − − ⇒
′′ ′′ ′′− −
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′′ +

�����

 (S.21) 

Within resonant approximation L resω ω ω≈ ≈ , this coincides with (S.18). For good Drude 

metal, (S.20) results in , /res resQγ γ ω γ≈ ≈ , and (S.21) reproduces the result obtained in [15] 

from the quantum-mechanical considerations. For realistic numbers, when the detuning 

~ 50 nmL res Lλ λ λ− < ∆ , thrλ  lies between Lλ  and resλ , while Lε  may increase by about 

~20% from the on-resonance value. If the shape factor N is known, the exact numbers can be 

obtained numerically from (S.17), which has larger applicability than the subsequent 

approximate formulas.  

 

Supp. Info. 5. Minimal threshold conditions for Lorentzian absorber (polar crystals in 

the IR) 

Conventional plasmonics uses metals as the materials with a negative real part of the 

dielectric function ε ′ . Another possibility to obtain 0ε ′ <  is to use the region near a strong 

(Lorentzian) absorption line, for example due to optical phonons in polar dielectric crystals 

[16, 17]. Such phonon-polariton resonances are usually in the IR. For reference purposes, we 

give here the optimal conditions similar to (S.13), if the absorber (index A) has a Lorentzian 

line profile instead of a Drude dispersion. In the resonant approximation, this profile can be 

described by 

 
/ 2

( ) / 2
L L

A
L Li

ε γε ε
ω ω γ∞= +

− −
 (S.22) 
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Here εL defines the strength of a Lorentzian and is equal to its contribution to the imaginary 

part at the line center, ( )A L Liε ω ε ε∞= + , while Lγ  is its FWHM. The gain material is 

characterized by the non-dispersive Eqn. (S.10). Repeating the steps leading to (S.13), one 

obtains: 

2 21 1
2 22 2 1 1

2 2
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, ( ) ( )

/ 2
L L GL

G L L G
L G

N N N
N N N

N

ε ε ε εω ω ε ε ε ε ε
γ ε ε

∞
∞

∞

′− − +− ′′ ′= − = − − +
′+

 (S.23) 

These are threshold expressions for an arbitrary shape factor N. For a Lorentzian absorber, 

0Aε ′ <  only for Lω ω>  and has a minimum there. As a result, each N produces two threshold 

values with identical Aε ′  values. The root closer to Lω  has much larger absorption and needs 

much higher threshold gain. Hence, we give the formulas only for the second (strongly 

detuned) root with the lower gain. The minimization of gain Gε ′′−  with respect to N results in 

the following values 
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 (S.24) 

Here the last approximations refer to the most relevant case of a strong absorber Lε ε∞>> . 

Condition 2Lε ε∞>  is required in (S.22), so that 0Aε ′ <  at least in some spectral range.  

The last equalities in (S.24) show, that the thresholds can become low only for strong 

absorbers. In this case the generation frequency lies on the far blue wing of the Lorentzian 

line. In this region, 0Aε ′ <  and both Aε ′′  and Aε ′−  increase with increasing wavelength 

(towards the center of the absorbing line). This leads to the competition between the 

decreasing shape factor N and increasing absorption and the emergence of the optimal 

condition in a similar way as discussed for the metals in the main text.  
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As an example, let us consider SiC, which has a very strong absorption line near λ=12.6 µm, 

with Lorentzian strength 248Lε ≈  and background a value 6.7ε∞ ≈  as adapted from [16, 18]. 

Assuming as before 2.6Gε ′ =  for the active matrix, and using expressions (S.24) we obtain:   

 min
min min0.39, 18.5, 0.28

/ 2
L

L

N
ω ω ε

γ
− ′′= = − =  (S.25) 

Thus, the generation with the lowest threshold takes place at a far blue slope of the Lorentzian 

line, exactly where Q-factors of the localized phonon-polariton resonances of nanostructures 

are high [16, 17]. The needed gain values become feasible for very strong absorbers, but are 

still about an order of magnitude higher than for the silver. This is because for metals 

/ ~ / 1M Mε ε γ ω′′ ′− << , while for Lorentzian absorbers / ~ 1A Aε ε′′ ′−  in the center of the line, 

and / ~ / ( ) 1A A L Lε ε γ ω ω′′ ′− − <<  on its wings. In other words, metals are “better oscillators” 

from the point of view of active plasmonics.  

 

Supp. Info. 6. Quasi-static core-shell multipoles 

Here we consider quasi-static multipolar denominators of spherical core-shell structures. Our 

geometry is shown in the inset in Fig. 3, namely a core with a radius 1a  and dielectric 

constant 1ε , a shell with a radius 2a  and dielectric constant 2ε , immersed in the ambient 

medium with a dielectric constant 3ε . The shell thickness 2 2 1h a a= − . The lowest (zero 

order) term in the Taylor expansion of the full multi-shell Mie multipolar denominator from 

[19] with respect to vacuum wavenumber k is: 

 
2 1

1
1 2 2 3 1 2 2 3

2

~ [ ( 1) ][ ( 1) ] ( 1) ( )( )
l

l

a
D l l l l l l

a
ε ε ε ε ε ε ε ε

+
 

+ + + + + + − − 
 

 (S.26) 

Higher order terms yield retardation corrections, as for the spheres in Supp. Info. 2, but for 

brevity we restrict ourselves to the quasi-static term. Similar formulas in the literature often 

contain inaccuracies. For example in Ref. [20], Eqn. (7.12), has a factor 3
1 2( / )a a  instead of 



  

S11 
 

2 1
1 2( / ) la a +  in the quasi-static multipolar term; in Ref. [1], Eqn. (5.36) and Ref. [3], Eqn. 

(2.33a), consider the dipolar case only, and the latter contains a factor 2 3(2 )ε ε−  instead of 

2 32( )ε ε− ; in Ref. [21], Eqn. (1), gives the correct expression for the multipolar resonant 

frequency, but only for a non-absorbing Drude shell in vacuum. 

In the symmetric two-materials case with 3 1ε ε=  Eqn. (S.26) becomes quadratic in 1ε  and 2ε , 

and can be rewritten as:  

 1 2 1 2~ ( )( )lD N Nε ε ε ε+ −+ +  (S.27) 

Here we introduced the notations: 

 
2

2 1
1 2

(2 1)
1 ( 2),

2 ( 1)(1 ( / ) )l

l
N g g g g

l l a a± +

+= − ± − =
+ −

 (S.28) 

As the threshold corresponds to zero of denominator (S.27), 0lD = , the parameters N±  are 

examples of the general multipolar shape parameter N from the Eqn. (5) in the main text. 

They are valid for arbitrary quasi-static symmetric core-shell with 1 3 Gε ε ε= = . To obtain 

compact illustrative formulas for thin shells 2 1h a<< , one can make further simplifications 

using the approximation: 

 
2 1

2 1 2 1

1 1 2

2 1 2 1

1 (2 1)
l l

h aa a h
l

a a h a

+ +
<<   

= ≈ − +   +   
 (S.29) 

In this case, the multipolar shape parameters N±  in Eqns. (S.27)-(S.28) up to the leading 

order in 2 1/h a  become: 

 1 2

2 1

2 1 ( 1)
,

( 1) 2 1

l a l l h
N N

l l h l a+ −
+ +≈ ≈
+ +

 (S.30) 

The first of these expressions is large, and the second is small; for 1 Gε ε= , 2 Mε ε=  the latter 

leads to the expression (9) in the main text. 

It is worth mentioning, that a thin active shell 2 Gε ε=  in a symmetric metallic environment 

1 3 Mε ε ε= =  results in exactly the same condition for the 2ε  of the gain medium:  
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 2 1
2 1 2 1

1 2

( 1) (2 1)
,

(2 1) ( 1)

l l h l a

l a l l h
ε ε ε ε+ += − = −

+ +
 (S.31) 

Similar formulas for the asymmetric case 1 3ε ε≠  can be obtained from Eqn. (S.26), which is 

linear in 1ε  or 3ε . For example, assuming that the gain material is in the core only (the 

situation discussed in [15] and studied in detail for 1l =  in Ref. [22]), we can write: 

 
2 1

2 3 1
1 2

2 3 2

(1 ) ( ) 1
, ,

(1 ) (1 )

l
f L f l a

L L f
Lf L f l a

ε εε ε
ε ε

+
 − + + += − = =  + + −  

 (S.32) 

In thin shell approximation, this results in: 

 
2 1

2 3 2
1 3 2 3

2 1

1
( ( 1) )

h a l h
l l

l a

ε εε ε ε ε
ε

<<  + −≈ − + + + 
 

 (S.33) 

For vanishing shell 2 0h →  one recovers the equations (7) and (8) for the sphere 1 in the 

ambient material 3. If the ambient material is transparent, .3 0ε ′′ = ., one can easily separate the 

real and imaginary parts here. In the lowest orders in 2 1/h a  this results in:  

 
2
3 2

1 3 1 22
12

1 1
, ( 1)(1 )

l l h
l

l l a

εε ε ε ε
ε

+ +′ ′′ ′′≈ − ≈ − + +  (S.34) 

The imaginary part of the gain material 1ε  becomes small for thin shells with 2 1h a<< , and 

we can expect low thresholds for the asymmetric core-shell, similarly to the situation 

described by the expression (9). However, the resonant wavelength is largely determined by 

the first term in the r.h.s. of the Eqn. (S.33), which implies that quasi-static “material 

resonances” might be absent altogether for the very thin core-shell in asymmetric background. 

For the asymmetric case of metallic core with gain shell in neutral background, used in 

experiments [23], equating 0lD =  in (S.26), and resolving the quadratic equation with respect 

to 2ε , one obtains 2 roots (with notations from (S.32)): 

 2 1 3
2 1 3

( 1) ( )
,

2 (1 )

Lf L L f
b b b

L f

ε εε ε ε + + += − ± − =
−

 (S.35) 
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When the gain shell is thick with respect to the core radius( 0)f → , one recovers the 

resonances for the inner and outer spheres: 

 2 1 2 3

1
,

1

l l

l l
ε ε ε ε+= − = −

+
 (S.36) 

From the structure of solutions (S.35) one infers, that the resonances are close to these 
limiting values if: 

 
for 1, 2

1/32

1

1, 2 1 0.26
l L h

Lf
a

= =

<< ⇒ >> − ≈  (S.37) 

This is not a very stringent requirement, with 2 1/ 2.14h a ≈  in Ref. [23], though their structure 

included a spacer and assumed inhomogeneous gain layer, which results in 5-materials system. 

The threshold there is within ~10% from the one obtained using Eq. (S.35), the latter being 

~5% higher than the 1st estimate in (S.36). This confirms that 2-materials case usually 

provides a lower limit for the threshold in more complex multiple-materials structures.  

We emphasize, that only the exact full, multi-shell Mie formulas with retardation were used in 

the Section 5 of the main text.  

 

Supp. Info. 7. Threshold for the near-field plasmon between 2 spheroids 

In many experimental and theoretical studies, pairs or several MNPs are used to tune or to 

strengthen plasmonic resonances [24, 25]. For the “bright, in phase” dipolar mode of metallic 

dimers, the field enhancement in the gap between the particles increases significantly, and the 

mode volume decreases. One might expect that this may decrease the spasing threshold if the 

gap is filled with a gain material. Here we illustrate that this is not the case, using simple 

example of identical spheroidal dipoles, aligned in z-direction along their common axis. The 

consideration is similar for other geometries. Due to interaction between such “dimer nano-

antennas”, the system can be characterized by the effective polarizability, see e.g., [26], which 

self-consistently includes the action of dipoles onto each other. Effective polarizability 

includes the resonant denominator, accounting for double-scattering round trip of light 
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between the particles. In the near field, when both dipoles are separated by the distance R and 

point in the same z-direction from one to another (which is the most favorable case for 

threshold minimization), the denominator of the effective polarizability is 2 6
12 1 4D Rα −= − . 

Here 
( )

4 ( (1 ))
M G

M G

V

L L

ε εα
π ε ε

−=
+ −

 is the polarizability of the individual spheroid, and the 64R−  

term comes from the near field dipole interaction in both directions. This is similar to Förster 

resonance energy transfer (FRET).  

The generation threshold in such a 2-particle system corresponds to a singularity in the 

effective polarizability, i.e., to a condition 12 0D = . This implies: 

 

3
2 6

12

2

3

( )
1 4 0

4 ( (1 )) 2

2
(1 ) ( ) ( ) (1 ) 0

3

M G

M G

M G M G M G

V R
D R

L L

a c
L L L v L v

R

ε εα α
π ε ε

ε ε ε ε ε ε

− −= − = ⇒ = = ⇒
+ −

+ − = − ⇒ − + − + =

 (S.38) 

Here we introduced additional geometrical factor 
2

3

2

3

a c
v

R
= , related to the inter-particle 

distance R and spheroid semi-axes c (axis of revolution) and a (notations are as in Supp. Info. 

1). The last resonant condition has exactly the same form as the general expression (5) for the 

individual particle.  

 
1

pair

G M

N

L v

L v
ε ε−= −

− +�����

 (S.39) 

The only difference is, that the shape factor pairN , besides the depolarization factor L, now 

contains the additional parameter v related to the volume and distance. This shifts the 

resonance, and for a given individual particle shape (characterized by L) makes pairN N<  for 

a single spheroid. However, as the functional relation (5) between Gε  and Mε  stays intact, the 

conditions (11) and the global optimum remain the same. Naturally, it occurs for a different 

geometry of an individual particle, as can be recalculated from (S.39), which can also be 
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useful for a qualitative understanding of resonances in metallic dimers without gain. The 

position of such “cold” (gain-less) resonances is determined by the real part of (S.39). For a 

constant Gε ′  and a typical metal, a decrease in pairN  shifts the resonance towards larger Mε ′− , 

that is to larger wavelengths. This means, that an increase in volume 2V a c∝ , or a decrease in 

inter-particle distance R, increase v and lead to a red shift of the “in-phase”, “bright” mode 

considered here even for small non-retarded Rayleigh particles. A similar approach can be 

applied to other modes. For realistic particle sizes, one usually has to consider retardation to 

obtain quantitative results.  

This argumentation remains valid for arbitrary near-field geometries. For far-field systems 

like conventional or random lasers, this does not hold. In such structures, arbitrarily low 

thresholds can be realized, utilizing amplification harvested from the large volumes of gain 

material, competing with the relatively small Ohmic losses on metallic mirrors or scatterers. 

 

Supp. Info. 8. Equivalence to the threshold formulation via complex eigenvalue 

Sometimes the generation threshold is defined as disappearance of the imaginary part of a 

complex eigenfrequency ω for the spasing mode [23]. This definition of threshold is 

equivalent to the condition Dl=0 in (14), which is used here and in other works [27, 28]. This 

can be explained as follows.  

With the incident field, the scattering problem is an inhomogeneous boundary-value problem. 

Boundary conditions at the outer boundary of the structure result in a system of 

inhomogeneous linear equations for the fields on both sides of the boundary (for example for 

E and H, more accurately for the coefficients in the corresponding eigenfunction expansion). 

Its solution is the ratio of two determinants. The numerator includes the column of “free 

terms” made of incident fields, while the denominator is made of the coefficient matrix of the 
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homogeneous system. The complex equality ( , ,...) 0l GD ε ω′′ =  allows one to find two real 

numbers: the threshold gain thrε ′′  and the generation frequency thrω .  

The eigenmodes of the spasing structure are the solutions of the same boundary-value 

problem, but without the external field. The corresponding boundary conditions yield a 

system of homogeneous linear equations with the same coefficient matrix as for the scattering 

problem. This system is consistent and has solutions only when its complex determinant 

equals zero, ( , ,...) 0l GD ε ω′′ = . This yields a set of complex eigenfrequencies 

( ,...) ( ,...)G Giω ω ε ω ε′ ′′ ′′ ′′= + . Without gain ( 0Gε ′′ = ), or for small gain, for the e-iωt sign 

convention, 0ω′′ <  describes the energy decay, but for a big enough (negative) gain 

0G thrε ε′′ ′′= <  the decay disappears ( ,...) 0thrω ε′′ ′′ = , which corresponds to the generation 

threshold. The real part of the eigenvalue at this gain yields the generation (spasing) 

frequency ( ,...)thr thrω ω ε′ ′′= . 

Thus, in both cases, the threshold parameters thrω  and thrε ′′  are found from the condition 

( , ,...) 0 0l thr thrD iε ω′′ = + , which proves the equivalence of both approaches. Far from the 

threshold the interrelation between the two approaches is less straightforward. 
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